An Efficient Spatial Query Processing Algorithm in Multi-sink Directional Sensor Network

Author(s):  
Zheng Ma ◽  
Jin Zheng ◽  
Weijia Jia ◽  
Guojun Wang
Author(s):  
Rone Ilidio da Silva ◽  
Virgil Del Duca Almeida ◽  
Andre Marques Poersch ◽  
Jose Marcos Silva Nogueira

2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092575
Author(s):  
Lin Kang ◽  
Zengshou Dong ◽  
Yanjie Qi

Both coverage and connectivity are important problems in wireless sensor networks. As more and more non-orientation sensors are continuously added into the region of interest, the size of covered component and connected component increases; at some point, the network can achieve an entire coverage and full connectivity after which the network percolates. In this article, we analyze the critical density in non-orientation directional sensor network in which the orientations of the sensors are random and the sensors are deployed according to the Poisson point process. We propose an approach to compute the critical density in such a network. A collaborating path is proposed with the sum of field-of-view angles of two collaborating sensors being π. Then a correlated model of non-orientation directional sensing sectors for percolation is proposed to solve the coverage and connectivity problems together. The numerical simulations confirm that percolation occurs on the estimated critical densities. It is worth mentioning that the theoretical analysis and simulation results give insights into the design of directional sensor network in practice.


Author(s):  
Wee Hyong Tok ◽  
Stéphane Bresan ◽  
Panagiotis Kalnis ◽  
Baihua Zhengl

The pervasiveness of mobile computing devices and wide-availability of wireless networking infrastructure have empowered users with applications that provides location-based services as well as the ability to pose queries to remote servers. This necessitates the need for adaptive, robust, and efficient techniques for processing the queries. In this chapter, we identify the issues and challenges of processing spatial data on the move. Next, we present insights on state-of-art spatial query processing techniques used in these dynamic, mobile environments. We conclude with several potential open research problems in this exciting area.


Sign in / Sign up

Export Citation Format

Share Document