Overview of Part II: Seismicity of Romania. Seismic Hazard Assessment; Local Soil Conditions Effects

Author(s):  
Mihaela Popa ◽  
Florin Pavel
2020 ◽  
Author(s):  
Farkhod Hakimov ◽  
Hans-Balder Havenith ◽  
Anatoly Ischuk ◽  
Marco Pilz ◽  
Klaus Reicherter

<p>Seismic hazard assessment of urban areas is an important and extremely challenging task. It is so important because without the knowledge of the influence of local soil conditions and properties, of the changing layer thickness in urban areas, and without considering multiple possible scenario earthquakes for this territory, engineers do not have enough information on how to design and construct seismically safe buildings. The particular challenge of this task is due to the great uncertainty affecting the prediction of the spatially (and sometimes even temporally) changing seismic properties of soils with respect to urban development.<br>Dushanbe is the capital of Tajikistan, a mountainous country marked by high to very high seismic hazard. The reason for the high seismic hazard specifically near Dushanbe is related to its location between two fault systems: South Gissar fault and Ilek-Vaksh fault.  Estimation of the seismic hazard of the urban areas in Tajikistan is very important because they had developed in a very short time and many high buildings are being constructed now Existing seismic action estimations are based on the old approaches when the main factors of the local soil conditions only consider general engineering-geological features of the territory as well as macro-seismic observations data. An additional problem is the building code in Tajikistan; it uses the estimation of the ground motions in terms of the MSK-64 scale, but does not enough take into account the variety of the soil conditions in the Dushanbe city area. Existing seismic hazard estimation of the area of Tajikistan is based on the so-called “The map of general seismic zoning of the territory of Tajikistan”, that was produced in 1978 in terms of MSK-64 scale. The seismic microzonation map of the Dushanbe city area was made in 1975 in terms of MSK-64 scale as well and was based on the engineering-geological approach mostly. This map does not represent the highly variable soil conditions of the Dushanbe city area which are partly due to the anthropogenic influence of the large city. Therefore, earlier seismic zonation maps assigned an intensity of IX to most districts of the city. However, those previous studies did not sufficiently quantify the local effects of soils on the seismic hazard, mainly the macro-seismic conditions (the relative distance of districts to fault lines) were considered for the zonation. <br>This study describes and implements a number of new approaches to the evaluation of maximum seismic impact and site effect values. </p>


Author(s):  
B.A. Trifonov ◽  
◽  
S.Yu. Milanovsky ◽  
I.A. Mindel ◽  
V.V. Nesinov ◽  
...  

In recent years the world has been actively developing oil and gas fields on the shelf, including in seismically active areas. On the seabed it is very difficult to carry out qualitative geological and geophysical studies and seismological observations in full, which are a part of seismic microzoning works. Programs for computational methods during seismic microzoning allow taking into account nonlinear soil properties. In the article the experience of studies on seismic microzoning (2012–2015) for the installation area of offshore structures on the shelf of the Middle Caspian Sea is considered. In conditions of absence of observations by bottom seismic stations the possibility of seismic hazard assessment by computational methods taking into account local soil conditions is shown. Thus the obtained values of seismic intensity are lower in comparison with the results of estimations by method of engineering and geological analogies and method of seismic rigidity. Maximal impacts from zones of possible earthquake sources most dangerous for Middle Caspian Sea have been taken into account by peculiarities of spectral composition of vibrations of ground bases in the form of reaction spectra.


Vestnik MGTU ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 14-34
Author(s):  
S. A. Kovachev ◽  
A. A. Krylov

The presence of seismic threat multiplies the environmental hazard, especially for oil and gas production and transport facilities in water areas. Currently, there are no normative maps of general seismic zoning of the water areas of the inland and marginal seas of Russia, especially since there are practically no maps of detailed seismic zoning and seismic microzoning of even individual parts of the water areas. Taking into account the fact that intensive development of offshore oil and gas fields and the Northern Sea Route has begun, the development of such maps becomes a very urgent scientific and practical task. The seismic hazard assessment for the submerged crossing was carried out in 2008. The initial seismic effects were calculated using a probabilistic seismic hazard analysis based on five models of seismic zones and three types of models of attenuation of peak and spectral accelerations. The results of the performed calculations, including deaggregation, have shown that the initial seismicity of the area of the gas pipeline crossing route through the Nevelskoy Strait for a return period of 1,000 years is lower than indicated on the OSR-2016-B map, where the eastern end of the crossing route through the strait is characterized by the initial seismicity equal to 9 points. The soil conditions (seismic microzoning) have been taken into account by three different methods: the seismic rigidity method, the calculation method, and the method considering the thickness of Quaternary deposits. The present studies show that seismic effects vary along the pipeline route from the mainland to Sakhalin Island from 8.4 to 8.9 on the MSK-64 scale for the recurrence period of seismic shaking T = 1,000 years and from 9.3 to 9.7 points for T = 5,000 years.


Author(s):  
С.А. Перетокин

В Российской Федерации исторически сложилась двухступенчатая схема оценки сейсмической опас- ности - оценка исходной сейсмичности для средних грунтов и последующая корректировка оценок с уче- том реальных грунтовых условий площадки Historically in the Russian Federation formed two-staged assessment scheme of seismic hazard assessment of the initial seismicity for average soils and the following correction of assessments with accounting of site real soil conditions


2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Etoundi Delair Dieudonné Ndibi ◽  
Eddy Ferdinand Mbossi ◽  
Nguet Pauline Wokwenmendam ◽  
Bekoa Ateba ◽  
Théophile Ndougsa-Mbarga

2014 ◽  
Vol 85 (6) ◽  
pp. 1316-1327 ◽  
Author(s):  
C. Beauval ◽  
H. Yepes ◽  
L. Audin ◽  
A. Alvarado ◽  
J.-M. Nocquet ◽  
...  

1994 ◽  
Vol 13 (3) ◽  
pp. 219-226 ◽  
Author(s):  
G. Monachesi ◽  
L. Peruzza ◽  
D. Slejko ◽  
M. Stucchi

Sign in / Sign up

Export Citation Format

Share Document