Hierarchical Self-organizing Maps of NIRS and EEG Signals for Recognition of Brain States

Author(s):  
Katsunori Oyama ◽  
Kaoru Sakatani ◽  
Hua Ming ◽  
Carl K. Chang
Author(s):  
Aladdin Ayesh ◽  
Miguel Arevalillo-Herra´ez ◽  
Pablo Arnau-González

This paper investigates the possibility of identifying classes by clustering. This study includes employing Self-Organizing Maps (SOM) in identifying clusters from EEG signals that could then be mapped to emotional classes. Beginning by training varying sizes of SOM with the EEG data provided from the public dataset: DEAP. The produced graphs showing Neighbor Distance, Sample Hits, and Weight Position are examined. Following that, the ground-truth label provided in DEAP is tested, in order to identify correlations between the label and the clusters produced by the SOM. The results show that there is a potential of class discovery using SOM-based clustering. It is then concluded that by evaluating the implications of this work and the difficulties in evaluating its outcome.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2019 ◽  
Vol 24 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Yvette Reisinger ◽  
Mohamed M. Mostafa ◽  
John P. Hayes

Author(s):  
Sylvain Barthelemy ◽  
Pascal Devaux ◽  
Francois Faure ◽  
Matthieu Pautonnier

Author(s):  
I. Álvarez ◽  
J.S. Font-Muñoz ◽  
I. Hernández-Carrasco ◽  
C. Díaz-Gil ◽  
P.M. Salgado-Hernanz ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 235
Author(s):  
Diego Galvan ◽  
Luciane Effting ◽  
Hágata Cremasco ◽  
Carlos Adam Conte-Junior

Background and objective: In the current pandemic scenario, data mining tools are fundamental to evaluate the measures adopted to contain the spread of COVID-19. In this study, unsupervised neural networks of the Self-Organizing Maps (SOM) type were used to assess the spatial and temporal spread of COVID-19 in Brazil, according to the number of cases and deaths in regions, states, and cities. Materials and methods: The SOM applied in this context does not evaluate which measures applied have helped contain the spread of the disease, but these datasets represent the repercussions of the country’s measures, which were implemented to contain the virus’ spread. Results: This approach demonstrated that the spread of the disease in Brazil does not have a standard behavior, changing according to the region, state, or city. The analyses showed that cities and states in the north and northeast regions of the country were the most affected by the disease, with the highest number of cases and deaths registered per 100,000 inhabitants. Conclusions: The SOM clustering was able to spatially group cities, states, and regions according to their coronavirus cases, with similar behavior. Thus, it is possible to benefit from the use of similar strategies to deal with the virus’ spread in these cities, states, and regions.


Sign in / Sign up

Export Citation Format

Share Document