NON-INVASIVE BCI METHOD: EEG - ELECTROENCEPHALOGRAPHY

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.

2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Faris Amin M. Abuhashish ◽  
Hoshang Kolivand ◽  
Mohd Shahrizal Sunar ◽  
Dzulkifli Mohamad

A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique.


2018 ◽  
Vol 8 (11) ◽  
pp. 199 ◽  
Author(s):  
Rodrigo Ramele ◽  
Ana Villar ◽  
Juan Santos

The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset of a BCI Competition.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shih Chung Chen ◽  
Aaron Raymond See ◽  
Yeou Jiunn Chen ◽  
Chia Hong Yeng ◽  
Chih Kuo Liang

People suffering from paralysis caused by serious neural disorder or spinal cord injury also need to be given a means of recreation other than general living aids. Although there have been a proliferation of brain computer interface (BCI) applications, developments for recreational activities are scarcely seen. The objective of this study is to develop a BCI-based remote control integrated with commercial devices such as the remote controlled Air Swimmer. The brain is visually stimulated using boxes flickering at preprogrammed frequencies to activate a brain response. After acquiring and processing these brain signals, the frequency of the resulting peak, which corresponds to the user’s selection, is determined by a decision model. Consequently, a command signal is sent from the computer to the wireless remote controller via a data acquisition (DAQ) module. A command selection training (CST) and simulated path test (SPT) were conducted by 12 subjects using the BCI control system and the experimental results showed a recognition accuracy rate of 89.51% and 92.31% for the CST and SPT, respectively. The fastest information transfer rate demonstrated a response of 105 bits/min and 41.79 bits/min for the CST and SPT, respectively. The BCI system was proven to be able to provide a fast and accurate response for a remote controller application.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012044
Author(s):  
Lingzhi Chen ◽  
Wei Deng ◽  
Chunjin Ji

Abstract Pattern Recognition is the most important part of the brain computer interface (BCI) system. More and more profound learning methods were applied in BCI to increase the overall quality of pattern recognition accuracy, especially in the BCI based on Electroencephalogram (EEG) signal. Convolutional Neural Networks (CNN) holds great promises, which has been extensively employed for feature classification in BCI. This paper will review the application of the CNN method in BCI based on various EEG signals.


2021 ◽  
Vol 39 (7) ◽  
pp. 1117-1132
Author(s):  
Samaa S. Abdulwahab ◽  
Hussain K. Khleaf ◽  
Manal H. Jassim

A Brain-Computer Interface (BCI) is an external system that controls activities and processes in the physical world based on brain signals. In Passive BCI, artificial signals are automatically generated by a computer program without any input from nerves in the body. This is useful for individuals with mobility issues. Traditional BCI has been dependent only on recording brain signals with Electroencephalograph (EEG) and has used a rule-based translation algorithm to generate control commands. These systems have developed very accurate translation systems. This paper is about the different methods for adapting the signals from the brain. It has been mentioned that various kinds of surveys in the past to serve the purpose of the present research. This paper shows a simple and easy analysis of each technique and its respective benefits and drawbacks, including signal acquisition, signal pre-processing, feature classification and classification. Finally,  discussed is the application of EEG-based BCI.


2020 ◽  
Vol 8 (6) ◽  
pp. 1275-1282

A brain-computer interface (BCI) provides a communication passage between the brain and an external stratagem. The Brain and its EEG signals are acquired from the BCI along its control signals and its widely used mechanism in the field of the biomedical fields. In this research work, an artifacts are removed algorithm in the EEG is developed and simulated in the MATLAB 2017a software tool. EEG signals from patients are recoded while recording some of the artificial signals added to it, which are instigated by using eye blinks, eye movement, muscle, and cardiac noise, and also non-biological sources. Using suitable filters these artificial signals can be removed. This paper aims to remove the artificial signals from EEG signals and parameters like mean, standard. Deviation are calculated and compared with other methods such as LAMICA and FASTERs. In the paper, it is also the proposed arrangement of EEG signals for the discovery of typical and anomalous exercises utilizing Wavelet change and Artificial Neural Network (ANN) Classifier is considered. Here, the framework utilizes the back proliferation with feed-forward for order which pursues the ANN grouping. Accuracy of the classification is calculated and compared with other states of art publications and found that it is better.


2019 ◽  
Vol 7 (2) ◽  
pp. 480-483
Author(s):  
Chengyu Li ◽  
Weijie Zhao

Abstract What can the brain–computer interface (BCI) do? Wearing an electroencephalogram (EEG) headcap, you can control the flight of a drone in the laboratory by your thought; with electrodes inserted inside the brain, paralytic patients can drink by controlling a robotic arm with thinking. Both invasive and non-invasive BCI try to connect human brains to machines. In the past several decades, BCI technology has continued to develop, making science fiction into reality and laboratory inventions into indispensable gadgets. In July 2019, Neuralink, a company founded by Elon Musk, proposed a sewing machine-like device that can dig holes in the skull and implant 3072 electrodes onto the cortex, promising more accurate reading of what you are thinking, although many serious scientists consider the claim misleading to the public. Recently, National Science Review (NSR) interviewed Professor Bin He, the department head of Biomedical Engineering at Carnegie Mellon University, and a leading scientist in the non-invasive-BCI field. His team developed new methods for non-invasive BCI to control drones by thoughts. In 2019, Bin’s team demonstrated the control of a robotic arm to follow a continuously randomly moving target on the screen. In this interview, Bin He recounted the history of BCI, as well as the opportunities and challenges of non-invasive BCI.


2018 ◽  
Vol 210 ◽  
pp. 05012 ◽  
Author(s):  
Zuzana Koudelková ◽  
Martin Strmiska

A Brain Computer Interface (BCI) enables to get electrical signals from the brain. In this paper, the research type of BCI was non-invasive, which capture the brain signals using electroencephalogram (EEG). EEG senses the signals from the surface of the head, where one of the important criteria is the brain wave frequency. This paper provides the measurement of EEG using the Emotiv EPOC headset and applications developed by Emotiv System. Two types of the measurements were taken to describe brain waves by their frequency. The first type of the measurements was based on logical and analytical reasoning, which was captured during solving mathematical exercise. The second type was based on relax mind during listening three types of relaxing music. The results of the measurements were displayed as a visualization of a brain activity.


Sign in / Sign up

Export Citation Format

Share Document