scholarly journals Transfer Operator-Based Extraction of Coherent Features on Surfaces

Author(s):  
Kathrin Padberg-Gehle ◽  
Sebastian Reuther ◽  
Simon Praetorius ◽  
Axel Voigt
Keyword(s):  
2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Christian B. Mendl ◽  
Folkmar Bornemann

AbstractThis work presents an efficient numerical method to evaluate the free energy density and associated thermodynamic quantities of (quasi) one-dimensional classical systems, by combining the transfer operator approach with a numerical discretization of integral kernels using quadrature rules. For analytic kernels, the technique exhibits exponential convergence in the number of quadrature points. As demonstration, we apply the method to a classical particle chain, to the semiclassical nonlinear Schrödinger (NLS) equation and to a classical system on a cylindrical lattice. A comparison with molecular dynamics simulations performed for the NLS model shows very good agreement.


2013 ◽  
Vol 111 (9) ◽  
Author(s):  
Norbert Schuch ◽  
Didier Poilblanc ◽  
J. Ignacio Cirac ◽  
David Pérez-García

2017 ◽  
Vol 39 (8) ◽  
pp. 2159-2175
Author(s):  
BENOÎT R. KLOECKNER

Using quantitative perturbation theory for linear operators, we prove a spectral gap for transfer operators of various families of intermittent maps with almost constant potentials (‘high-temperature’ regime). Hölder and bounded $p$-variation potentials are treated, in each case under a suitable assumption on the map, but the method should apply more generally. It is notably proved that for any Pommeau–Manneville map, any potential with Lipschitz constant less than 0.0014 has a transfer operator acting on $\operatorname{Lip}([0,1])$ with a spectral gap; and that for any two-to-one unimodal map, any potential with total variation less than 0.0069 has a transfer operator acting on $\operatorname{BV}([0,1])$ with a spectral gap. We also prove under quite general hypotheses that the classical definition of spectral gap coincides with the formally stronger one used in Giulietti et al [The calculus of thermodynamical formalism. J. Eur. Math. Soc., to appear. Preprint, 2015, arXiv:1508.01297], allowing all results there to be applied under the high-temperature bounds proved here: analyticity of pressure and equilibrium states, central limit theorem, etc.


Sign in / Sign up

Export Citation Format

Share Document