scholarly journals Effective high-temperature estimates for intermittent maps

2017 ◽  
Vol 39 (8) ◽  
pp. 2159-2175
Author(s):  
BENOÎT R. KLOECKNER

Using quantitative perturbation theory for linear operators, we prove a spectral gap for transfer operators of various families of intermittent maps with almost constant potentials (‘high-temperature’ regime). Hölder and bounded $p$-variation potentials are treated, in each case under a suitable assumption on the map, but the method should apply more generally. It is notably proved that for any Pommeau–Manneville map, any potential with Lipschitz constant less than 0.0014 has a transfer operator acting on $\operatorname{Lip}([0,1])$ with a spectral gap; and that for any two-to-one unimodal map, any potential with total variation less than 0.0069 has a transfer operator acting on $\operatorname{BV}([0,1])$ with a spectral gap. We also prove under quite general hypotheses that the classical definition of spectral gap coincides with the formally stronger one used in Giulietti et al [The calculus of thermodynamical formalism. J. Eur. Math. Soc., to appear. Preprint, 2015, arXiv:1508.01297], allowing all results there to be applied under the high-temperature bounds proved here: analyticity of pressure and equilibrium states, central limit theorem, etc.

Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julián López-Gómez ◽  
Juan Carlos Sampedro

Abstract This paper generalizes the classical theory of perturbation of eigenvalues up to cover the most general setting where the operator surface 𝔏 : [ a , b ] × [ c , d ] → Φ 0 ⁢ ( U , V ) {\mathfrak{L}:[a,b]\times[c,d]\to\Phi_{0}(U,V)} , ( λ , μ ) ↦ 𝔏 ⁢ ( λ , μ ) {(\lambda,\mu)\mapsto\mathfrak{L}(\lambda,\mu)} , depends continuously on the perturbation parameter, μ, and holomorphically, as well as nonlinearly, on the spectral parameter, λ, where Φ 0 ⁢ ( U , V ) {\Phi_{0}(U,V)} stands for the set of Fredholm operators of index zero between U and V. The main result is a substantial extension of a classical finite-dimensional theorem of T. Kato (see [T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Class. Math., Springer, Berlin, 1995, Chapter 2, Section 5]).


2021 ◽  
pp. 161441
Author(s):  
Yuantao Zhao ◽  
Rui Wang ◽  
Yanle Sun ◽  
Lianbo Wang ◽  
Xinfeng Wu ◽  
...  

Author(s):  
Temirkhan Aleroev ◽  
Hedi Aleroeva ◽  
Lyudmila Kirianova

In this paper, we give a formula for computing the eigenvalues of the Dirichlet problem for a differential equation of second-order with fractional derivatives in the lower terms. We obtained this formula using the perturbation theory for linear operators. Using this formula we can write out the system of eigenvalues for the problem under consideration.


2021 ◽  
Author(s):  
Scott Bair

Abstract In the classical approach to elastohydrodynamic lubrication (EHL) a single parameter, the pressure-viscosity coefficient, quantifies the isothermal pressure dependence of the viscosity for use in prediction of film thickness. Many definitions are in current use. Progress toward a successful definition of this property has been hampered by the refusal of those working in classical EHL to acknowledge the existence of accurate measurements of the piezoviscous effect that have existed for nearly a century. The Hamrock and Dowson pressure-viscosity coefficient at high temperature requires knowledge of the piezoviscous response at pressures which exceed the inlet pressure and may exceed the Hertz pressure. The definition of pressure-viscosity coefficient and the assumed equation of state must limit the use of the classical formulas, including Hamrock and Dowson, to liquids with high Newtonian limit and to low temperature. Given that this problem has existed for at least fifty years without resolution, it is reasonable to conclude that there is no definition of pressure-viscosity coefficient that will quantify the piezoviscous response for an analytical calculation of EHL film thickness at temperatures above ambient.


Sign in / Sign up

Export Citation Format

Share Document