scholarly journals Topological Order in the Projected Entangled-Pair States Formalism: Transfer Operator and Boundary Hamiltonians

2013 ◽  
Vol 111 (9) ◽  
Author(s):  
Norbert Schuch ◽  
Didier Poilblanc ◽  
J. Ignacio Cirac ◽  
David Pérez-García
2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungmin Kim ◽  
Johannes Schwenk ◽  
Daniel Walkup ◽  
Yihang Zeng ◽  
Fereshte Ghahari ◽  
...  

AbstractThe quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded the concept of topological order in physics bringing into focus the intimate relation between the “bulk” topology and the edge states. The QH effect in graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials. However, the broken-symmetry edge states have eluded spatial measurements. In this article, we spatially map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $${{\nu }}={{0}},\pm {{1}}$$ ν = 0 , ± 1 across the quantum Hall edge boundary using high-resolution atomic force microscopy (AFM) and show a gapped ground state proceeding from the bulk through to the QH edge boundary. Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moiré superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Christian B. Mendl ◽  
Folkmar Bornemann

AbstractThis work presents an efficient numerical method to evaluate the free energy density and associated thermodynamic quantities of (quasi) one-dimensional classical systems, by combining the transfer operator approach with a numerical discretization of integral kernels using quadrature rules. For analytic kernels, the technique exhibits exponential convergence in the number of quadrature points. As demonstration, we apply the method to a classical particle chain, to the semiclassical nonlinear Schrödinger (NLS) equation and to a classical system on a cylindrical lattice. A comparison with molecular dynamics simulations performed for the NLS model shows very good agreement.


2017 ◽  
Vol 14 (2) ◽  
pp. 160-165 ◽  
Author(s):  
Zhihuang Luo ◽  
Jun Li ◽  
Zhaokai Li ◽  
Ling-Yan Hung ◽  
Yidun Wan ◽  
...  
Keyword(s):  

2007 ◽  
Vol 19 (14) ◽  
pp. 145212 ◽  
Author(s):  
Shunsuke Furukawa ◽  
Grégoire Misguich ◽  
Masaki Oshikawa

Sign in / Sign up

Export Citation Format

Share Document