scholarly journals Idempotent Conjunctive Combination of Belief Functions by Distance Minimization

Author(s):  
John Klein ◽  
Sebastien Destercke ◽  
Olivier Colot
2018 ◽  
Vol 92 ◽  
pp. 32-48 ◽  
Author(s):  
John Klein ◽  
Sebastien Destercke ◽  
Olivier Colot

Author(s):  
Jianping Fan ◽  
Jing Wang ◽  
Meiqin Wu

The two-dimensional belief function (TDBF = (mA, mB)) uses a pair of ordered basic probability distribution functions to describe and process uncertain information. Among them, mB includes support degree, non-support degree and reliability unmeasured degree of mA. So it is more abundant and reasonable than the traditional discount coefficient and expresses the evaluation value of experts. However, only considering that the expert’s assessment is single and one-sided, we also need to consider the influence between the belief function itself. The difference in belief function can measure the difference between two belief functions, based on which the supporting degree, non-supporting degree and unmeasured degree of reliability of the evidence are calculated. Based on the divergence measure of belief function, this paper proposes an extended two-dimensional belief function, which can solve some evidence conflict problems and is more objective and better solve a class of problems that TDBF cannot handle. Finally, numerical examples illustrate its effectiveness and rationality.


Author(s):  
Orakanya Kanjanatarakul ◽  
Philai Lertpongpiroon ◽  
Sombat Singkharat ◽  
Songsak Sriboonchitta

2016 ◽  
Vol 46 (1) ◽  
pp. 93-108 ◽  
Author(s):  
Deqiang Han ◽  
Jean Dezert ◽  
Zhansheng Duan

2013 ◽  
Vol 14 (4) ◽  
pp. 504-520 ◽  
Author(s):  
Anthony Fiche ◽  
Jean-Christophe Cexus ◽  
Arnaud Martin ◽  
Ali Khenchaf

2013 ◽  
Vol 62 (3) ◽  
pp. 555-568 ◽  
Author(s):  
Felipe Aguirre ◽  
Mohamed Sallak ◽  
Walter Schon

2022 ◽  
Vol 142 ◽  
pp. 130-146
Author(s):  
Abdelhak Imoussaten ◽  
Lucie Jacquin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document