Extended two-dimensional belief function based on divergence measurement

Author(s):  
Jianping Fan ◽  
Jing Wang ◽  
Meiqin Wu

The two-dimensional belief function (TDBF = (mA, mB)) uses a pair of ordered basic probability distribution functions to describe and process uncertain information. Among them, mB includes support degree, non-support degree and reliability unmeasured degree of mA. So it is more abundant and reasonable than the traditional discount coefficient and expresses the evaluation value of experts. However, only considering that the expert’s assessment is single and one-sided, we also need to consider the influence between the belief function itself. The difference in belief function can measure the difference between two belief functions, based on which the supporting degree, non-supporting degree and unmeasured degree of reliability of the evidence are calculated. Based on the divergence measure of belief function, this paper proposes an extended two-dimensional belief function, which can solve some evidence conflict problems and is more objective and better solve a class of problems that TDBF cannot handle. Finally, numerical examples illustrate its effectiveness and rationality.

Author(s):  
Dariusz Jacek Jakóbczak

Proposed method, called Probabilistic Nodes Combination (PNC), is the method of 2D curve interpolation and extrapolation using the set of key points (knots or nodes). Nodes can be treated as characteristic points of data for modeling and analyzing. The model of data can be built by choice of probability distribution function and nodes combination. PNC modeling via nodes combination and parameter ? as probability distribution function enables value anticipation in risk analysis and decision making. Two-dimensional curve is extrapolated and interpolated via nodes combination and different functions as discrete or continuous probability distribution functions: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function. Novelty of the paper consists of two generalizations: generalization of previous MHR method with various nodes combinations and generalization of linear interpolation with different (no basic) probability distribution functions and nodes combinations.


2021 ◽  
Vol 5 (2) ◽  
pp. 9-24
Author(s):  
Arthi N ◽  
Mohana K

As the extension of the Fuzzy sets (FSs) theory, the Interval-valued Pythagorean Fuzzy Sets (IVPFS) was introduced which play an important role in handling the uncertainty. The Pythagorean fuzzy sets (PFSs) proposed by Yager in 2013 can deal with more uncertain situations than intuitionistic fuzzy sets because of its larger range of describing the membership grades. How to measure the distance of Interval-valued Pythagorean fuzzy sets is still an open issue. Jensen–Shannon divergence is a useful distance measure in the probability distribution space. In order to efficiently deal with uncertainty in practical applications, this paper proposes a new divergence measure of Interval-valued Pythagorean fuzzy sets,which is based on the belief function in Dempster–Shafer evidence theory, and is called IVPFSDM distance. It describes the Interval-Valued Pythagorean fuzzy sets in the form of basic probability assignments (BPAs) and calculates the divergence of BPAs to get the divergence of IVPFSs, which is the step in establishing a link between the IVPFSs and BPAs. Since the proposed method combines the characters of belief function and divergence, it has a more powerful resolution than other existing methods.


Author(s):  
Dariusz Jakóbczak

Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots or nodes). Proposed method, called by author Probabilistic Nodes Combination (PNC), is such a method. This novel PNC method is introduced in the case of Hurwitz- Radon Matrices (MHR). MHR method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is modeled and interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction.


2000 ◽  
Vol 14 (10) ◽  
pp. 1105-1128 ◽  
Author(s):  
M. SEBAWE ABDALLA ◽  
A.-S. F. OBADA

In this paper we introduce a new squeeze operator which is a combination of the two single photon squeezing operator and two mode correlated operator. We construct the general coherent-state wave function, and study the effects of this operator on the photon number sum and difference. We find in absence of the squeezing parameters λ1 and λ2 both the sum and the difference are conserved by the two mode correlated operator. The squeezing phenomenon is discussed, and the minimum uncertainty state is found for small value of the squeezing parameter λ. Besides the Glauber second order correlation function, the statistical investigations are carried out for the quasi-probability distribution functions (P-representation, Wigner function and Q-function). The discussion related to the phase space distribution function is given, and the matrix elements of the density operator are calculated. The photocount distribution is also considered.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.


Sign in / Sign up

Export Citation Format

Share Document