Temporal Bisection Procedure

Author(s):  
Marilia Pinheiro de Carvalho ◽  
Armando Machado ◽  
Marco Vasconcelos
2016 ◽  
Vol 44 (4) ◽  
pp. 366-377 ◽  
Author(s):  
Adam E. Fox ◽  
Katelyn E. Prue ◽  
Elizabeth G. E. Kyonka

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 801
Author(s):  
Jessica Cliff ◽  
Surrey Jackson ◽  
James McEwan ◽  
Lewis Bizo

Domestic dogs completed a temporal bisection procedure that required a response to one lever following a light stimulus of short duration and to another lever following a light stimulus of a longer duration. The short and long durations across the four conditions were (0.5–2.0 s, 1.0–4.0 s, 2.0–8.0 s, and 4.0–16.0 s). Durations that were intermediate, the training durations, and the training durations, were presented during generalization tests. The dogs bisected the intervals near the geometric mean of the short and long-stimulus pair. Weber fractions were not constant when plotted as a function of time: A U-shaped function described them. These results replicate the findings of previous research reporting points of subjective equality falling close to the geometric mean and also confirm recent reports of systematic departures from Weber’s law.


2009 ◽  
Vol 20 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Ryan D. Ward ◽  
Scott T. Barrett ◽  
Robert N. Johnson ◽  
Amy L. Odum

Author(s):  
Melissa J Allman ◽  
Iser G DeLeon ◽  
John H Wearden

Abstract Perception of time, in the seconds to minutes range, is not well characterized in autism. The required interval timing system (ITS) develops at the same stages during infancy as communication, social reciprocity, and other cognitive and behavioral functions. The authors used two versions of a temporal bisection procedure to study the perception of duration in individuals with autism and observed quantifiable differences and characteristic patterns in participants' timing functions. Measures of timing performance correlated with certain autism diagnostic and intelligence scores, and parents described individuals with autism as having a poor sense of time. The authors modeled the data to provide a relative assessment of ITS function in these individuals. The implications of these results for the understanding of autism are discussed.


2019 ◽  
Vol 45 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Renata Cambraia ◽  
Marco Vasconcelos ◽  
Jérémie Jozefowiez ◽  
Armando Machado

2021 ◽  
Author(s):  
Emily A. Williams ◽  
Ruth Ogden ◽  
Andrew James Stewart ◽  
Luke Anthony Jones

Trains of auditory clicks increase subsequent judgements of stimulus duration by approximately 10%. Scalar timing theory suggests this is due to a 10% increase in pacemaker rate, a main component of the internal clock. The effect has been demonstrated in many timing tasks, including verbal estimation, temporal generalisation, and temporal bisection. However, the effect of click trains has yet to be examined on temporal sensitivity, commonly measured by temporal difference thresholds. We sought to investigate this both experimentally; where we found no significant increase in temporal sensitivity, and computationally; by modelling the temporal difference threshold task according to scalar timing theory. Our experimental null result presented three possibilities which we investigated by simulating a 10% increase in pacemaker rate in a newly-created scalar timing theory model of thresholds. We found that a 10% increase in pacemaker rate led to a significant improvement in temporal sensitivity in only 8.66% of 10,000 simulations. When a 74% increase in pacemaker rate was modelled to simulate the filled-duration illusion, temporal sensitivity was significantly improved in 55.36% of simulations. Therefore, scalar timing theory does predict improved temporal sensitivity for a faster pacemaker, but the effect of click trains (a supposed 10% increase) appears to be too small to be reliably found in the temporal difference threshold task.


i-Perception ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 204166951876062
Author(s):  
Shuhei Shima ◽  
Yuki Murai ◽  
Kenichi Yuasa ◽  
Yuki Hashimoto ◽  
Yuko Yotsumoto

In recent years, several studies have reported that the allocation of spatial attention fluctuates periodically. This periodic attention was revealed by measuring behavioral performance as a function of cue-to-target interval in the Posner cueing paradigm. Previous studies reported behavioral oscillations using target detection tasks. Whether the influence of periodic attention extends to cognitively demanding tasks remains unclear. To assess this, we examined the effects of periodic attention on the perception of duration. In the experiment, participants performed a temporal bisection task while a cue was presented with various cue-to-target intervals. Perceived duration fluctuated rhythmically as a function of cue-to-target interval at a group level but not at an individual level when the target was presented on the same side as the attentional cue. The results indicate that the perception of duration is influenced by periodic attention. In other words, periodic attention can influence the performance of cognitively demanding tasks such as the perception of duration.


Sign in / Sign up

Export Citation Format

Share Document