light stimulus
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 100)

H-INDEX

37
(FIVE YEARS 5)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0253030
Author(s):  
Johannes Zauner ◽  
Herbert Plischke ◽  
Hans Strasburger

Non-visual photoreceptors (ipRGCs) and rods both exert a strong influence on the human pupil, yet pupil models regularly use cone-derived sensitivity as their basis. This inconsistency is further exacerbated by the fact that circadian effects can modulate the wavelength sensitivity. We assessed the pupillary reaction to narrowband light stimuli in the mesopic range. Pupil size for eighty-three healthy participants with normal color vision was measured in nine experimental protocols with varying series of continuous or discontinuous light stimuli under Ganzfeld conditions, presented after 90 seconds of dark adaptation. One hundred and fifty series of stimulation were conducted across three experiments, and were analyzed for wavelength-dependency on the normalized pupillary constriction (nPC), conditional on experimental settings and individual traits. Traits were surveyed by questionnaire; color vision was tested by Ishihara plates or the Lanthony D15 test. Data were analyzed with generalized additive mixed models (GAMM). The normalized pupillary constriction response is consistent with L+M-cone derived sensitivity when the series of light stimuli is continuous, i.e., is not interrupted by periods of darkness, but not otherwise. The results also show that a mesopic illuminance weighing led to an overall best prediction of pupillary constriction compared to other types of illuminance measures. IpRGC influence on nPC is not readily apparent from the results. When we explored the interaction of chronotype and time of day on the wavelength dependency, differences consistent with ipRGC influence became apparent. The models indicate that subjects of differing chronotype show a heightened or lowered sensitivity to short wavelengths, depending on their time of preference. IpRGC influence is also seen in the post-illumination pupil reflex if the prior light-stimulus duration is one second. However, shorter wavelengths than expected become more important if the light-stimulus duration is fifteen or thirty seconds. The influence of sex on nPC was present, but showed no interaction with wavelength. Our results help to define the conditions, under which the different wavelength sensitivities in the literature hold up for narrowband light settings. The chronotype effect might signify a mechanism for strengthening the individual´s chronotype. It could also be the result of the participant’s prior exposure to light (light history). Our explorative findings for this effect demand replication in a controlled study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuzeng Shi ◽  
Yu Liu ◽  
Ling Yang ◽  
Jie Yan

In response to a light stimulus, the mammalian circadian clock first dramatically increases the expression of Per1 mRNA, and then drops to a baseline even when light persists. This phenomenon is known as light adaptation, which has been experimentally proven to be related to the CRTC1-SIK1 pathway in suprachiasmatic nucleus (SCN). However, the role of this light adaptation in the circadian rhythm remains to be elucidated. To reveal the in-depth function of light adaptation and the underlying dynamics, we proposed a mathematical model for the CRTC1-SIK1 network and coupled it to a mammalian circadian model. The simulation result proved that the light adaptation is achieved by the self-inhibition of the CRTC1/CREB complex. Also, consistently with experimental observations, this adaptation mechanism can limit the phase response to short-term light stimulus, and it also restricts the rate of the phase shift in a jet lag protocol to avoid overly rapid re-entrainment. More importantly, this light adaptation is predicted to prevent the singularity behavior in the cell population, which represents the abolishment of circadian rhythmicity due to desynchronization of oscillating cells. Furthermore, it has been shown to provide refractoriness to successive stimuli with short gap. Therefore, we concluded that the light adaptation generated by the CRTC1-SIK1 pathway in the SCN provides a robust mechanism, allowing the circadian system to maintain homeostasis in the presence of light perturbations. These results not only give new insights into the dynamics of light adaptation from a computational perspective but also lead us to formulate hypotheses about the related physiological significance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Riccardo De Santis ◽  
Fred Etoc ◽  
Edwin A. Rosado-Olivieri ◽  
Ali H. Brivanlou

AbstractOrganizing centers secrete morphogens that specify the emergence of germ layers and the establishment of the body’s axes during embryogenesis. While traditional experimental embryology tools have been instrumental in dissecting the molecular aspects of organizers in model systems, they are impractical in human in-vitro model systems to dissect the relationships between signaling and fate along embryonic coordinates. To systematically study human embryonic organizer centers, we devised a collection of optogenetic ePiggyBac vectors to express a photoactivatable Cre-loxP recombinase, that allows the systematic induction of organizer structures by shining blue-light on human embryonic stem cells (hESCs). We used a light stimulus to geometrically confine SHH expression in neuralizing hESCs. This led to the self-organization of mediolateral neural patterns. scRNA-seq analysis established that these structures represent the dorsal-ventral forebrain, at the end of the first month of development. Here, we show that morphogen light-stimulation is a scalable tool that induces self-organizing centers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carolina Beppi ◽  
Giorgio Beringer ◽  
Dominik Straumann ◽  
Stefan Yu Bögli

AbstractThe startle reflex in larval zebrafish describes a C-bend of the body occurring in response to sudden, unexpected, stimuli of different sensory modalities. Alterations in the startle reflex habituation (SRH) have been reported in various human and animal models of neurological and psychiatric conditions and are hence considered an important behavioural marker of neurophysiological function. The amplitude, offset and decay constant of the auditory SRH in larval zebrafish have recently been characterised, revealing that the measures are affected by variation in vibratory frequency, intensity, and interstimulus-interval. Currently, no study provides a model-based analysis of the effect of physical properties of light stimuli on the visual SRH. This study assessed the effect of incremental light-stimulus intensity on the SRH of larval zebrafish through a repeated-measures design. Their total locomotor responses were normalised for the time factor, based on the behaviour of a (non-stimulated) control group. A linear regression indicated that light intensity positively predicts locomotor responses due to larger SRH decay constants and offsets. The conclusions of this study provide important insights as to the effect of light properties on the SRH in larval zebrafish. Our methodology and findings constitute a relevant reference framework for further investigation in translational neurophysiological research.


2021 ◽  
Vol 11 (11) ◽  
pp. 1469
Author(s):  
Juan Fernando Ortiz ◽  
Ahmed Eissa-Garces ◽  
Samir Ruxmohan ◽  
Victor Cuenca ◽  
Mandeep Kaur ◽  
...  

Parinaud’s syndrome involves dysfunction of the structures of the dorsal midbrain. We investigated the pathophysiology related to the signs and symptoms to better understand the symptoms of Parinaud’s syndrome: diplopia, blurred vision, visual field defects, ptosis, squint, and ataxia, and Parinaud’s main signs of upward gaze paralysis, upper eyelid retraction, convergence retraction nystagmus (CRN), and pseudo-Argyll Robertson pupils. In upward gaze palsy, three structures are disrupted: the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), interstitial nucleus of Cajal (iNC), and the posterior commissure. In CRN, there is a continuous discharge of the medial rectus muscle because of the lack of inhibition of supranuclear fibers. In Collier’s sign, the posterior commissure and the iNC are mainly involved. In the vicinity of the iNC, there are two essential groups of cells, the M-group cells and central caudal nuclear (CCN) group cells, which are important for vertical gaze, and eyelid control. Overstimulation of the M group of cells and increased firing rate of the CCN group causing eyelid retraction. External compression of the posterior commissure, and pretectal area causes pseudo-Argyll Robertson pupils. Pseudo-Argyll Robertson pupils constrict to accommodation and have a slight response to light (miosis) as opposed to Argyll Robertson pupils were there is no response to a light stimulus. In Parinaud’s syndrome patients conserve a slight response to light because an additional pathway to a pupillary light response that involves attention to a conscious bright/dark stimulus. Diplopia is mainly due to involvement of the trochlear nerve (IVth cranial nerve. Blurry vision is related to accommodation problems, while the visual field defects are a consequence of chronic papilledema that causes optic neuropathy. Ptosis in Parinaud’s syndrome is caused by damage to the oculomotor nerve, mainly the levator palpebrae portion. We did not find a reasonable explanation for squint. Finally, ataxia is caused by compression of the superior cerebellar peduncle.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Syeda Kubra ◽  
Haiyang Zhang ◽  
Youwen Si ◽  
Xiao Gao ◽  
Tianzhen Wang ◽  
...  

AbstractEndogenous clocks generate rhythms in gene expression, which facilitates the organisms to cope through periodic environmental variations in accordance with 24-h light/dark time. A core question that needs to be elucidated is how such rhythms proliferate throughout the cells and regulate the dynamic physiology. In this study, we demonstrate the role of REGγ as a new regulator of circadian clock in mice, primary MEF, and SY5Y cells. Assessment of circadian conduct reveals a difference in circadian period, wheel mode, and the ability to acclimate the external light stimulus between WT and KO littermates. Compared to WT mice, REGγ KO mice attain the phase delay behavior upon light shock at early night. During the variation of 12/12 h light/dark (LD) exposure, levels of Per1, Per2, Cry1, Clock, Bmal1, and Rorα circadian genes in suprachiasmatic nucleus are significantly higher in REGγ KO than in WT mice, concomitant with remarkable changes in BMAL1 and PER2 proteins. In cultured cells depleted of REGγ, serum shock induces early response of the circadian genes Per1 and Per2 with the cyclic rhythm maintained. Mechanistic study indicates that REGγ directly degrades BMAL1 by the non-canonical proteasome pathway independent of ATP and ubiquitin. Silencing BMAL1 abrogates the changes in circadian genes in REGγ-deficient cells. However, inhibition of GSK-3β, a known promoter for degradation of BMAL1, exacerbates the action of REGγ depletion. In conclusion, our findings define REGγ as a new factor, which functions as a rheostat of circadian rhythms to mitigate the levels of Per1 and Per2 via proteasome-dependent degradation of BMAL1.


2021 ◽  
Author(s):  
Athira Athira ◽  
Daniel Dondorp ◽  
Jerneja Rudolf ◽  
Olivia Peytral ◽  
Marios Chatzigeorgiou

Locomotion is broadly conserved in the animal kingdom, yet our understanding of how complex locomotor behaviors are generated and have evolved is relatively limited by the lack of an accurate description of their structural organization. Here we take a neuroethological approach to break down the motor behavioral repertoire of one of our nearest invertebrate relative, the protochordate Ciona intestinalis, into basic building blocks. Using machine vision, we track thousands of swimming larvae to obtain a feature-rich description of larval swimming and show that most of the postural variance can be captured by six basic shapes, which we term Eigencionas. Using multiple complementary approaches, we built representations of the larval behavioral dynamics and systematically reveal the global structure of behavior. By employing matrix profiling and subsequence time-series clustering, we reveal that Ciona swimming is rich in stereotyped behavioral motifs. Combining pharmacological inhibition of bioamine signaling with Hidden Markov Model we discover underlying behavioral states including multiple modes of roaming and dwelling. Finally, performing a spatio-temporal embedding of the postural features onto a behavioral space provides insight into the behavioral repertoire by project it to a low-dimensional space and highlights subtle light stimulus evoked behavioral differences. Taken together, Ciona larvae generate their spontaneous swimming and visuomotor behavioral repertoire by altering both their motor modules and transitions between, which are amenable to pharmacological perturbations, facilitating future functional and mechanistic investigations.


2021 ◽  
Vol 22 (20) ◽  
pp. 11300
Author(s):  
Muhammad Naeem ◽  
Mubasher Zahir Hoque ◽  
Muhammad Ovais ◽  
Chanbasha Basheer ◽  
Irshad Ahmad

The innovative research in genome editing domains such as CRISPR-Cas technology has enabled genetic engineers to manipulate the genomes of living organisms effectively in order to develop the next generation of therapeutic tools. This technique has started the new era of “genome surgery”. Despite these advances, the barriers of CRISPR-Cas9 techniques in clinical applications include efficient delivery of CRISPR/Cas9 and risk of off-target effects. Various types of viral and non-viral vectors are designed to deliver the CRISPR/Cas9 machinery into the desired cell. These methods still suffer difficulties such as immune response, lack of specificity, and efficiency. The extracellular and intracellular environments of cells and tissues differ in pH, redox species, enzyme activity, and light sensitivity. Recently, smart nanoparticles have been synthesized for CRISPR/Cas9 delivery to cells based on endogenous (pH, enzyme, redox specie, ATP) and exogenous (magnetic, ultrasound, temperature, light) stimulus signals. These methodologies can leverage genome editing through biological signals found within disease cells with less off-target effects. Here, we review the recent advances in stimulus-based smart nanoparticles to deliver the CRISPR/Cas9 machinery into the desired cell. This review article will provide extensive information to cautiously utilize smart nanoparticles for basic biomedical applications and therapeutic genome editing.


Author(s):  
Владислав Анатольевич Савченко ◽  
Ольга Александровна Гуськова

Молекулярные переключатели на основе азобензола (азо) являются светочувствительными молекулами, которые могут переключаться между двумя конфигурационными состояниями под действием света. Светочувствительные азо -монослои можно использовать для модуляции работы выхода, то есть они влияют на свойства электродов. В данной работе мы отвечаем на вопрос, что происходит со структурами, электронными свойствами и перераспределением заряда в монослоях азобитиофена (азо-бт) в зависимости от светового стимула, используя теорию функционала плотности. Моделируются два типа переключателей, различающихся расположением азо и бт от группы пришивки молекулы к поверхности: азо-бт и бт-азо . Один из них (бт-азо) описан в литературе, другой же является продуктом молекулярного дизайна. Мы описываем транс- и цис-изомеры для каждого переключателя, находящегося в контакте с кластером золота. Наше моделирование объясняет гигантское соотношение в проводимости ON/OFF-состояний при воздействии УФ-излучения на монослой улучшенной электронной связью между цис-изомерами (состояние ON) и кластером золота. Транс-изомеры же (OFF состояние) моделируемых переключателей играют роль изоляторов. Кроме того, мы показываем, какие именно свойства улучшаются после молекулярного дизайна. Данное исследование открывает новые возможности в разработке инновационных модификаций поверхности электродов. Molecular switches based on azobenzene (azo) are defined as light-responsive molecules which can change between two configurational states under light stimuli. Responsive azo monolayers can be used to modulate the work function, i.e. they tune the properties of the interfaces at the electrodes. In this work, we investigate what happens to the structures, electronic properties, and the charge redistribution within azo-bithiophene (azo-bt) monolayers depending on the light stimulus using density functional theory. Two types of switches differing in the order of azo and bt counting from the anchor group are modelled: azo-bt and bt-azo . One of them (bt-azo) is known from the literature, the remaining one is a product of rational design. We describe trans- and cis-isomers for each switch being in a contact with a gold cluster. Our simulations explain a giant ON/OFF conductance ratio upon UV light stimulus by improved electronic coupling between the cis-isomers (ON-state) and the gold cluster. The trans-isomers (OFF-state) of the simulated switches play the role of the insulators. Moreover, we show which molecular properties are enchanced by molecular design. This study opens up new avenues to the development of the innovative design of electrode surface modifications.


2021 ◽  
Author(s):  
Mariana Costa Dias ◽  
Cecílio Caldeira ◽  
Markus Gastauer ◽  
Silvio Ramos ◽  
Guilherme Oliveira

Abstract BackgroundCanga is the Brazilian term for the savanna-like vegetation harboring several endemic species on iron-rich rocky outcrops, usually considered for mining activities. Parkia platycephala Benth. and Stryphnodendron pulcherrimum (Willd.) Hochr. naturally occur in the cangas of Serra dos Carajás (eastern Amazonia, Brazil) and the surrounding forest, indicating high phenotypic plasticity. The morphological and physiological mechanisms of the plants’ establishment in the canga environment are well studied, but the molecular adaptative responses are still unknown. We aimed to identify molecular mechanisms that allow the establishment of these plants in the canga environment.ResultsPlants were grown in canga and forest substrates collected in the Carajás Mineral Province. RNA was extracted from pooled leaf tissue, and RNA-seq paired-end reads were assembled into representative transcriptomes for P. platycephala and S. pulcherrimum containing 31,728 and 31,311 primary transcripts, respectively. We identified both species-specific and core molecular responses in plants grown in the canga substrate using differential expression analyses. In the species-specific analysis, we identified 1,112 and 838 differentially expressed genes for P. platycephala and S. pulcherrimum, respectively. Enrichment analyses showed unique biological processes and metabolic pathways affected for each species. Comparative differential expression analysis was based on shared single-copy orthologs. The overall pattern of ortholog expression was species-specific. Even so, almost 300 altered genes were identified between plants in canga and forest substrates, responding the same way in both species. The genes were functionally associated with the response to light stimulus and the circadian rhythm pathway.ConclusionsPlants possess species-specific adaptative responses to cope with the substrates. Our results also suggest that plants adapted to both canga and forest environments can adjust the circadian rhythm in a substrate-dependent manner. The circadian clock gene modulation might be a central mechanism regulating the plants’ development in the canga substrate in the studied legume species. The mechanism may be shared as a common mechanism to abiotic stress compensation in other native species.


Sign in / Sign up

Export Citation Format

Share Document