Complexity of Flow Structures and Turbulent Transport in Heterogeneously Forested Landscapes: Large-Eddy Simulation Study of the Waldstein Site

Author(s):  
Farah Kanani-Sühring ◽  
Eva Falge ◽  
Linda Voß ◽  
Siegfried Raasch
2013 ◽  
Vol 29 (3) ◽  
pp. 661-674 ◽  
Author(s):  
Junya Watanabe ◽  
Toshinori Kouchi ◽  
Kenichi Takita ◽  
Goro Masuya

Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

Author(s):  
Lara Schembri Puglisevich ◽  
Gary Page

Unsteady Large Eddy Simulation (LES) is carried out for the flow around a bluff body equipped with an underbody rear diffuser in close proximity to the ground, representing an automotive diffuser. The goal is to demonstrate the ability of LES to model underbody vortical flow features at experimental Reynolds numbers (1.01 × 106 based on model height and incoming velocity). The scope of the time-dependent simulations is not to improve on Reynolds-Averaged Navier Stokes (RANS), but to give further insight into vortex formation and progression, allowing better understanding of the flow, hence allowing more control. Vortical flow structures in the diffuser region, along the sides and top surface of the bluff body are successfully modelled. Differences between instantaneous and time-averaged flow structures are presented and explained. Comparisons to pressure measurements from wind tunnel experiments on an identical bluff body model shows a good level of agreement.


2011 ◽  
Vol 47 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
G. H. Yeoh ◽  
S. C. P. Cheung ◽  
J. Y. Tu ◽  
T. J. Barber

2019 ◽  
Vol 116 (6) ◽  
pp. 636
Author(s):  
Peng Zhao ◽  
Yinhe Lin ◽  
Bin Yang ◽  
Kegao Liu ◽  
Jingrui Zhao ◽  
...  

Transient asymmetric circulations in the vertical-bending section of a continuous caster were simulated using a large eddy simulation (LES) model. The accuracy of the modelling was verified by comparing the jet behaviours, asymmetrical flow structures in the water model, and velocities reported in the literature. Coherent structures play an essential role in the circulations motion in the vertical-bending caster. A classical Q-criterion was introduced to detect and identify coherent vortices to investigate flow structures. The results indicate that coherent vortices in the lower circulation exhibit asymmetrical features, which further reveal the nature of the turbulence behind the flow structures in the caster. Monitoring points were then selected to investigate the motions of the “strong” and “weak” circulatory vortices and corresponding velocity variations at the interface between the vertical and bending section of the caster. The alternative variations show the periodic behaviours of asymmetrical circulations at both sides of the vertical-bending caster. Besides these circulations were interrelated and interacted, they were also affected by the curved section of the caster, which resulted in the asymmetrical flow structures in the vertical-bending caster. Finally, the effects of casting speed and SEN immersion depths on the oscillation frequency of circulations during a continuous casting process were analysed. As the casting speed increased, the oscillation frequency and power spectrum increased accordingly; as the SEN immersion depth increased, the oscillation frequency and power spectrum thereof decreased accordingly.


Sign in / Sign up

Export Citation Format

Share Document