Adaptive Control, Synchronization and Circuit Simulation of a Memristor-Based Hyperchaotic System With Hidden Attractors

Author(s):  
Sundarapandian Vaidyanathan ◽  
Viet-Thanh Pham ◽  
Christos Volos
2019 ◽  
Vol 29 (09) ◽  
pp. 1950117 ◽  
Author(s):  
Xin Zhang ◽  
Chunhua Wang

Based on the study on Jerk chaotic system, a multiscroll hyperchaotic system with hidden attractors is proposed in this paper, which has infinite number of equilibriums. The chaotic system can generate [Formula: see text] scroll hyperchaotic hidden attractors. The dynamic characteristics of the multiscroll hyperchaotic system with hidden attractors are analyzed by means of dynamic analysis methods such as Lyapunov exponents and bifurcation diagram. In addition, we have studied the synchronization of the system by applying an adaptive control method. The hardware experiment of the proposed multiscroll hyperchaotic system with hidden attractors is carried out using discrete components. The hardware experimental results are consistent with the numerical simulation results of MATLAB and the theoretical analysis results.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


2019 ◽  
Vol 29 (07) ◽  
pp. 1950092 ◽  
Author(s):  
Qigui Yang ◽  
Lingbing Yang ◽  
Bin Ou

This paper reports some hidden hyperchaotic attractors and complex dynamics in a new five-dimensional (5D) system with only two nonlinear terms. The system is generated by adding two linear controllers to an unusual 3D autonomous quadratic chaotic system with two stable node-foci. In particular, the hyperchaotic system without equilibrium or with only one stable equilibrium can generate two kinds of hidden hyperchaotic attractors with three positive Lyapunov exponents. Numerical methods not only verify the existence of such attractors and hyperchaotic attractors, but also show the dynamical evolution of this system. The 5D system has self-excited attractors and two types of hidden attractors with the change of its parameter. The parameter switching algorithm is further utilized to numerically approximate the attractor. Specifically, the hidden hyperchaotic attractor can be approximated by switching between two self-excited chaotic attractors. Finally, the circuit realization results are consistent with the numerical results.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 124641-124646 ◽  
Author(s):  
Xiaotao Min ◽  
Xiaoyuan Wang ◽  
Pengfei Zhou ◽  
Simin Yu ◽  
Herbert Ho-Ching Iu

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Qiang Lai ◽  
Paul Didier Kamdem Kuate ◽  
Huiqin Pei ◽  
Hilaire Fotsin

This paper proposes a new no-equilibrium chaotic system that has the ability to yield infinitely many coexisting hidden attractors. Dynamic behaviors of the system with respect to the parameters and initial conditions are numerically studied. It shows that the system has chaotic, quasiperiodic, and periodic motions for different parameters and coexists with a large number of hidden attractors for different initial conditions. The circuit and microcontroller implementations of the system are given for illustrating its physical meaning. Also, the synchronization conditions of the system are established based on the adaptive control method.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650222 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsonbaty ◽  
A. A. Elsadany ◽  
A. E. Matouk

This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh–Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.


2016 ◽  
Vol 26 (1) ◽  
pp. 95-115 ◽  
Author(s):  
Ourania I. Tacha ◽  
Christos K. Volos ◽  
Ioannis N. Stouboulos ◽  
Ioannis M. Kyprianidis

In this paper a novel 3-D nonlinear finance chaotic system consisting of two nonlinearities with negative saving term, which is called ‘dissaving’ is presented. The dynamical analysis of the proposed system confirms its complex dynamic behavior, which is studied by using wellknown simulation tools of nonlinear theory, such as the bifurcation diagram, Lyapunov exponents and phase portraits. Also, some interesting phenomena related with nonlinear theory are observed, such as route to chaos through a period doubling sequence and crisis phenomena. In addition, an interesting scheme of adaptive control of finance system’s behavior is presented. Furthermore, the novel nonlinear finance system is emulated by an electronic circuit and its dynamical behavior is studied by using the electronic simulation package Cadence OrCAD in order to confirm the feasibility of the theoretical model.


Sign in / Sign up

Export Citation Format

Share Document