Development of a User-Friendly App for Testing Blood Coagulation Status in Schizophrenia Patients

Author(s):  
Johannes Vegt ◽  
Paul C. Guest
1975 ◽  
Vol 50 (6) ◽  
pp. 424-430 ◽  
Author(s):  
M Perlman ◽  
A Dvilansky

2019 ◽  
Vol 158 (02) ◽  
pp. 165-169
Author(s):  
Philipp von Roth ◽  
Kathi Thiele

AbstractPrior to a surgical intervention, the examination of patient coagulation disorders is unfortunately often underestimated. While patients with a haemophilia A or B are usually aware of the congenital tendency to bleed, disorders of increased blood coagulation, thrombophilia, are frequently undetected. Therefore, complications caused by thromboses and embolisms after total hip arthroplasty are far more common than uncontrollable post-operative bleeding. Patients with liver cirrhosis are considered to be particularly complicated and their coagulation status can be difficult to manage. This article describes the most common pathological coagulation disorders and provides information to identify them preoperatively. Furthermore, surgical strategy considerations for the use of certain implant types in this patient group are discussed.


2018 ◽  
Vol 8 (1) ◽  
pp. 84 ◽  
Author(s):  
Silju-John Kunnakattu ◽  
Theresia Groß ◽  
Juvano Knieps ◽  
Tim Kemper ◽  
Stefan Fennrich ◽  
...  

2022 ◽  
Vol 20 (8) ◽  
pp. 3093
Author(s):  
E. A. Shmidt ◽  
S. A. Berns ◽  
T. Yu. Penskaya ◽  
I. I. Zhidkova ◽  
O. V. Gruzdeva ◽  
...  

Aim. To study the blood coagulation status by various laboratory methods in patients after pulmonary embolism (PE) receiving long-term anticoagulant therapy.Material and methods. The blood of 23 patients with pulmonary embolism, who received long-term anticoagulant therapy, was studied. The study of coagulation profile, D-dimer, thrombodynamics, thromboelastography and thrombin generation test were carried out.Results. The thrombin generation test shows a significant increase in the time of its formation, while the maximum amount of thrombin formed is half that of the reference values. There is a slightly increased median fibrin clot growth rate in the thrombodynamics test — 30,4 gm/min with a normal coagulation rate of 20-29 gm/min. The result of thromboelastography also reflects the blood hypocoagulation, in terms of R, Angle a and CI.Conclusion. Integral methods for assessing the thrombotic readiness in combination with a routine coagulation panel demonstrate a complete picture of blood coagulation potential in patients after pulmonary embolism requiring long-term anticoagulant therapy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1882-1882
Author(s):  
Sina Pourang ◽  
Michael A Suster ◽  
Pedram Mohseni ◽  
Lalitha V Nayak

Abstract Background: There is an intimate link between inflammation and thrombosis, and patients with pro-inflammatory/infectious disorders develop a hypercoagulable state. Extant coagulation assays are unable to distinguish the pro-coagulant state of a patient's blood, require 2-3 mL of blood, and take 2-3 hours for processing. These assays are also typically examined in plasma and do not represent the contribution of blood cellular elements that participate in thrombosis in vivo. Thus, a point-of-care device for rapid, comprehensive assessment of whole blood coagulation is crucial to ensure appropriate and timely evaluation in critically ill patients. We have introduced a microfluidic sensor (ClotChip) that uses dielectric spectroscopy to provide such an assessment in a handheld platform. We have shown in clinical studies in patients with a hypocoagulable state that ClotChip is sensitive to both coagulation factor and platelet defects, allowing for a global assessment of blood coagulation status using <10 µL of whole blood and in <30 min. In this study, we optimized ClotChip to assess the blood coagulation status in patients with a hypercoagulable state. Methods: Citrated blood samples from 12 patients with a diagnosis of sepsis and 11 healthy donors as controls were obtained under an IRB-approved protocol and tested with ClotChip within 2 hours of collection. ClotChip readout curve was calculated as the temporal variation of blood dielectric permittivity at 1 MHz, and the time to reach a permittivity peak (T peak) was taken as an indicator of coagulation time based on our prior studies. To increase the sensitivity of the ClotChip T peak parameter to a hypercoagulable state, we used two different anticoagulants, recombinant thrombomodulin (rTM) and activated protein C (APC). To optimize the anticoagulant concentration, whole blood samples from healthy donors were treated in vitro with lipopolysaccharide to mimic a pro-coagulant state of blood and tested with ClotChip after adding various concentrations of rTM and APC. We concluded that a concentration of 5 µg/mL for rTM and 10 µg/mL for APC would result in an optimal change in T peak for detecting the pro-coagulant state. Since heparin (or lovenox) is routinely used in hospitalized patients, sepsis and control samples were pretreated with hepzyme at a final concentration of 2 IU/mL to reverse the heparin effect. The T peak parameter was measured and compared in (i) hepzyme only-, (ii) rTM-, and (iii) APC-treated samples. Data are reported as mean ± standard deviation. Two-tailed t test is used to test for statistical significance between groups, and P < 0.05 is considered statistically significant. In box-and-whiskers plots, the box represents the range from the first to the third quartile, the horizontal line represents the median, plus sign (+) represents mean of the data; whiskers extend to the maximum and minimum data values, and dots represent individual subject data. Results: In hepzyme only-treated samples, T peak was significantly prolonged at 478±137 sec in sepsis samples, as compared to 357±58 sec in controls (Figs. 1A, 1B). rTM treatment resulted in T peak of 503±128 sec for sepsis samples and 443±81 sec for controls, whereas APC treatment resulted in T peak of 1,095±850 sec for sepsis samples and 477±71 sec for controls (Figs. 1A, 1B). Although T peak was prolonged at baseline in hepzyme only-treated sepsis samples, no further prolongation was noted with rTM treatment (difference in T peak of 24±94 sec; Fig. 1C), as compared to rTM-treated controls (difference in T peak of 85±40 sec; Fig. 1C). However, with a difference in T peak of 616±804 sec, the APC-treated sepsis samples exhibited T peak prolongation when compared to hepzyme only-treated sepsis samples, whereas the APC-treated controls did not (difference in T peak of 119±64 sec; Fig. 1D). A comparison between the APC- and rTM-treated samples revealed a significant prolongation of T peak in sepsis samples (difference in T peak of 591±815 sec) when compared to controls (difference in T peak of 30±66 sec; Fig. 1E). Conclusions: Our studies identify a unique coagulation profile in sepsis patient blood using a microfluidic dielectric sensor. These data suggest that the addition of rTM or APC can enhance the sensitivity of the ClotChip T peak parameter for detecting the pro-coagulant state in whole blood. Ongoing studies are examining the coagulation profile in other pro-inflammatory and infectious states. Figure 1 Figure 1. Disclosures Suster: XaTek Inc.: Consultancy, Current holder of stock options in a privately-held company, Patents & Royalties, Research Funding. Mohseni: XaTek Inc.: Consultancy, Current holder of stock options in a privately-held company, Patents & Royalties, Research Funding. Nayak: BioChip Labs: Current Employment.


2014 ◽  
Vol 5 (3) ◽  
pp. 817 ◽  
Author(s):  
Markandey M. Tripathi ◽  
Zeinab Hajjarian ◽  
Elizabeth M. Van Cott ◽  
Seemantini K. Nadkarni

2020 ◽  
Vol 61 (2) ◽  
pp. 249-253
Author(s):  
Kaoru Okishige ◽  
Tatsuhiko Hirao ◽  
Atsushi Oda ◽  
Takatoshi Shigeta ◽  
Rena A. Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document