Shape Optimization of Microfluidic Pump Using Fluid-Structure Interaction Approach

2017 ◽  
pp. 471-477
Author(s):  
P. M. Pawar ◽  
R. R. Gidde ◽  
B. P. Ronge
Author(s):  
P. Brousseau ◽  
M. Benaouicha ◽  
S. Guillou

This paper deals with the dynamics of an oscillating foil, describing a free heaving (vertical displacement) and prescribed pitching (rotational displacement) movement which is computed from its position in two different ways. A fluid-structure interaction approach is chosen, as the physics of the flow and the structure are strongly coupled. The flow is unsteady, turbulent and incompressible. The pressure/velocity problem is solved using SIMPLEC scheme. First, the pitching movement is considered as a given continuous function of the hydrofoil heaving position. Second, the pitching motion is performed alternately at the end of each heave cycle. For each case, two maximum angles of attack and one heaving amplitudes are studied. Preliminary results showed that a high maximum angle of attack generates more lift hydrodynamics force, but also requires more energy to perform the rotation of pitch.


Sign in / Sign up

Export Citation Format

Share Document