scholarly journals Reduction of the Spectral Feature Space Dimension in the Multiclass Problem of ECG-Signals Recognition

Author(s):  
L. Manilo ◽  
A. Nemirko
Author(s):  
Vo Thi Ngoc Chau ◽  
Nguyen Hua Phung

Educational data clustering on the students’ data collected with a program can find several groups of the students sharing the similar characteristics in their behaviors and study performance. For some programs, it is not trivial for us to prepare enough data for the clustering task. Data shortage might then influence the effectiveness of the clustering process and thus, true clusters can not be discovered appropriately. On the other hand, there are other programs that have been well examined with much larger data sets available for the task. Therefore, it is wondered if we can exploit the larger data sets from other source programs to enhance the educational data clustering task on the smaller data sets from the target program. Thanks to transfer learning techniques, a transfer-learning-based clustering method is defined with the kernel k-means and spectral feature alignment algorithms in our paper as a solution to the educational data clustering task in such a context. Moreover, our method is optimized within a weighted feature space so that how much contribution of the larger source data sets to the clustering process can be automatically determined. This ability is the novelty of our proposed transfer learning-based clustering solution as compared to those in the existing works. Experimental results on several real data sets have shown that our method consistently outperforms the other methods using many various approaches with both external and internal validations.


2014 ◽  
Vol 61 (4) ◽  
pp. 1241-1250 ◽  
Author(s):  
Vasileios G. Kanas ◽  
Iosif Mporas ◽  
Heather L. Benz ◽  
Kyriakos N. Sgarbas ◽  
Anastasios Bezerianos ◽  
...  

2021 ◽  
Author(s):  
Laura Summerauer ◽  
Philipp Baumann ◽  
Leonardo Ramirez-Lopez ◽  
Matti Barthel ◽  
Marijn Bauters ◽  
...  

Abstract. Information on soil properties is crucial for soil preservation, improving food security, and the provision of ecosystem services. Especially, for the African continent, spatially explicit information on soils and their ability to sustain these services is still scarce. To address data gaps, infrared spectroscopy has gained great success as a cost-effective solution to quantify soil properties in recent decades. Here, we present a mid-infrared soil spectral library (SSL) for central Africa (CSSL) that can predict key soil properties allowing for future soil estimates with a minimal need for expensive and time-consuming wet chemistry. Currently, our CSSL contains over 1,800 soils from ten distinct geo-climatic regions throughout the Congo Basin and wider African Great Lakes region. We selected six hold-out core regions from our SSL, augmented them with the continental AfSIS SSL, which does not cover central African soils. We present three levels of geographical extrapolation, deploying Memory-based learning (MBL) to accurately predict carbon (TC) and nitrogen (TN) contents in the selected regions. The Root Mean Square Error of the predictions (RMSEpred) values were between 0.38–0.86 % and 0.04–0.17 % for TC and TN, respectively, when using the AfSIS SSL only to predict the six regions. Prediction accuracy could be improved for four out of six regions when adding central African soils to the AfSIS SSL. This reduction of extrapolation resulted in RMSEpred ranges of 0.41–0.89 % for TC and 0.03–0.12 % for TN. In general, MBL leveraged spectral similarity and thereby predicted the soils in each of the six regions accurately; the effect of avoiding geographical extrapolation and forcing regional samples in the local neighborhood (MBL-spiking) was small. We conclude that our CSSL adds valuable soil diversity that can improve predictions for the regions compared to using the continental scale AfSIS SSL alone; thus, analyses of other soils in central Africa will be able to profit from a more diverse spectral feature space. Given these promising results, the library comprises an important tool to facilitate economical soil analyses and predict soil properties in an understudied yet critical region of Africa. Our SSL is openly available for application and for enlargement with more spectral and reference data to further improve soil diagnostic accuracy and cost-effectiveness.


Sign in / Sign up

Export Citation Format

Share Document