radiance data
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 47)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 275
Author(s):  
Yanhui Xie ◽  
Lu Mao ◽  
Min Chen ◽  
Jiancheng Shi ◽  
Shuiyong Fan ◽  
...  

Currently, humidity information can be obtained from the Microwave Humidity Sounder-2 (MWHS-2) mounted on the polar-orbiting satellites FY-3C and FY-3D. However, making full use of the MWHS-2 data remains a challenge, particularly in the application of regional numerical weather models. This study is the first to include MWHS-2 radiance data in the Rapid-refresh Multi-scale Analysis and Prediction System—Short-term (RMAPS-ST) regional model. The results and impact of MWHS-2 radiance data assimilation were investigated and evaluated. It is found that MWHS-2 radiance data can be effectively assimilated in the RMAPS-ST after a series of quality control and variational bias correction. Benefits could be obtained in the reduction of background departures for each humidity sounding channel. Assimilation experiments over a period of one month were carried out, and the impacts of MWHS-2 radiances were quantitatively analyzed on the forecasts of RMAPS-ST system. The results showed that MWHS-2 saw a small but significant improvement for low-level humidity of short-range forecast, by 16.5% and 3.2% in terms of mean bias and root-mean-square error, respectively. The positive impact on short-range forecast also can be found for middle and low level temperature and wind. For quantitative precipitation forecast, the assimilation of MWHS-2 radiances increased the score skills of different rainfall levels in the first 12 h forecast by an average of 1.4%. There was a slight overall improvement in the 24-h precipitation forecast for over-estimation and false alarm of 3-h accumulated rainfall below 1.0 mm, with 0.75% and 0.36%, respectively. The addition of MWHS-2 radiance data gives a small positive impact on low-level humidity, temperature, and wind in the RMAPS-ST regional model, and it also improves short-range forecast of rainfall, particularly in the first 12 h of the forecast.


MAUSAM ◽  
2021 ◽  
Vol 42 (4) ◽  
pp. 347-352
Author(s):  
P. N. MAHAJAN ◽  
S. P. GHANEKAR

Satellite-observed HRC {Highly Reflective Cloud) data of 13 years from January 1971 to December 1983 are used for deducing open ocean rainfall over the tropical Indian Ocean. For this purpose, a comparison is made between satellite-observed monthly HRC frequency and monthly rainfall of eight island stations over the tropical Indian Ocean. Monthly frequencies of HRCs are statistically tested for linear regression relationship with 1248 stations months rainfall. Linear regression equation R=64.7+48.9 H (where R=Estimated rainfall and H= Monthly HRC frequency) and correlation coefficient (0.74) between HRC frequency and rainfall are found to be highly significant at 1% level. For the validation of the equation independent HRC data set for the year 1987 has been tested. Isohyetal patterns for this year obtained from HRC data are compared with Isohyetal patterns prepared by India Meteorological Department using.JNSAT-1B radiance data. Both the isohyetal patterns almost reflect the similar features. Mean isohyetal patterns derived from HRC data for the period 1971-1983 are found to be in. good agreement with the climatological synoptic events persisting over the tropical Indian Ocean. Therefore, It IS suggested that HRC data can be used with some confidence for rainfall estimates over the tropical Indian Ocean.  


2021 ◽  
Vol 13 (22) ◽  
pp. 4556
Author(s):  
Dongmei Xu ◽  
Xuewei Zhang ◽  
Hong Li ◽  
Haiying Wu ◽  
Feifei Shen ◽  
...  

In this study, the case of super typhoon Lekima, which landed in Jiangsu and Zhejiang Province on 4 August 2019, is numerically simulated. Based on the Weather Research and Forecasting (WRF) model, the sensitivity experiments are carried out with different combinations of physical parameterization schemes. The results show that microphysical schemes have obvious impacts on the simulation of the typhoon’s track, while the intensity of the simulated typhoon is more sensitive to surface physical schemes. Based on the results of the typhoon’s track and intensity simulation, one parameterization scheme was further selected to provide the background field for the following data assimilation experiments. Using the three-dimensional variational (3DVar) data assimilation method, the Microwave Humidity Sounder-2 (MWHS-2) radiance data onboard the Fengyun-3D satellite (FY-3D) were assimilated for this case. It was found that the assimilation of the FY-3D MWHS-2 radiance data was able to optimize the initial field of the numerical model in terms of the model variables, especially for the humidity. Finally, by the inspection of the typhoon’s track and intensity forecast, it was found that the assimilation of FY-3D MWHS-2 radiance data improved the skill of the prediction for both the typhoon’s track and intensity.


2021 ◽  
Vol 13 (21) ◽  
pp. 4368
Author(s):  
Miguel Morata ◽  
Bastian Siegmann ◽  
Pablo Morcillo-Pallarés ◽  
Juan Pablo Rivera-Caicedo ◽  
Jochem Verrelst

The retrieval of sun-induced fluorescence (SIF) from hyperspectral radiance data grew to maturity with research activities around the FLuorescence EXplorer satellite mission FLEX, yet full-spectrum estimation methods such as the spectral fitting method (SFM) are computationally expensive. To bypass this computational load, this work aims to approximate the SFM-based SIF retrieval by means of statistical learning, i.e., emulation. While emulators emerged as fast surrogate models of simulators, the accuracy-speedup trade-offs are still to be analyzed when the emulation concept is applied to experimental data. We evaluated the possibility of approximating the SFM-like SIF output directly based on radiance data while minimizing the loss in precision as opposed to SFM-based SIF. To do so, we implemented a double principal component analysis (PCA) dimensionality reduction, i.e., in both input and output, to achieve emulation of multispectral SIF output based on hyperspectral radiance data. We then evaluated systematically: (1) multiple machine learning regression algorithms, (2) number of principal components, (3) number of training samples, and (4) quality of training samples. The best performing SIF emulator was then applied to a HyPlant flight line containing at sensor radiance information, and the results were compared to the SFM SIF map of the same flight line. The emulated SIF map was quasi-instantaneously generated, and a good agreement against the reference SFM map was obtained with a R2 of 0.88 and NRMSE of 3.77%. The SIF emulator was subsequently applied to 7 HyPlant flight lines to evaluate its robustness and portability, leading to a R2 between 0.68 and 0.95, and a NRMSE between 6.42% and 4.13%. Emulated SIF maps proved to be consistent while processing time was in the order of 3 min. In comparison, the original SFM needed approximately 78 min to complete the SIF processing. Our results suggest that emulation can be used to efficiently reduce computational loads of SIF retrieval methods.


2021 ◽  
Vol 13 (19) ◽  
pp. 3869
Author(s):  
Lu Lee ◽  
Chunqiang Wu ◽  
Chengli Qi ◽  
Xiuqing Hu ◽  
Mingge Yuan ◽  
...  

The deep-space (DS) view spectra are used as a cold reference to calibrate the Hyperspectral Infrared Atmospheric Sounder (HIRAS) Earth scene (ES) observations. The DS spectra stability in the moving average window is crucial to the calibration accuracy of ES radiances. While in the winter and spring seasons, the HIRAS detector-3 DS view is susceptible to solar stray light intrusion when the satellite flies towards the tail of every descending orbit, and as a result, the measured DS spectra are contaminated by the stray light pseudo spectra, especially in the short-wave infrared (SWIR) band. The solar light intrusion issue was addressed on 13 December 2019 when the DS view angle of the scene selection mirror (SSM) was adjusted from −77.4° to −87°. As for the historic contaminated data, a correction method is applied to detect the anomalous data by checking the continuity of the DS spectra and then replace them with the proximate normal ones. The historic ES observations are recalibrated after the contaminated DS spectra correction. The effect of the correction is assessed by comparing the recalibrated HIRAS radiances with those measured by the Cross-track Infrared Sounder onboard the Suomi National Polar-orbiting Partnership Satellite (SNPP/CrIS) via the extended simultaneous nadir overpasses (SNOx) technique and by checking the consistency among the radiance data from different HIRAS detectors. The results show that the large biases of the radiance brightness temperature (BT) caused by the contamination are ameliorated greatly to the levels observed in the normal conditions.


2021 ◽  
Vol 13 (16) ◽  
pp. 3330
Author(s):  
Mingshan Duan ◽  
Jiangjiang Xia ◽  
Zhongwei Yan ◽  
Lei Han ◽  
Lejian Zhang ◽  
...  

Radar reflectivity (RR) greater than 35 dBZ usually indicates the presence of severe convective weather, which affects a variety of human activities, including aviation. However, RR data are scarce, especially in regions with poor radar coverage or substantial terrain obstructions. Fortunately, the radiance data of space-based satellites with universal coverage can be converted into a proxy field of RR. In this study, a convolutional neural network-based data-driven model is developed to convert the radiance data (infrared bands 07, 09, 13, 16, and 16–13) of Himawari-8 into the radar combined reflectivity factor (CREF). A weighted loss function is designed to solve the data imbalance problem due to the sparse convective pixels in the sample. The developed model demonstrates an overall reconstruction capability and performs well in terms of classification scores with 35 dBZ as the threshold. A five-channel input is more efficient in reconstructing the CREF than the commonly used one-channel input. In a case study of a convective event over North China in the summer using the test dataset, U-Net reproduces the location, shape and strength of the convective storm well. The present RR reconstruction technology based on deep learning and Himawari-8 radiance data is shown to be an efficient tool for producing high-resolution RR products, which are especially needed for regions without or with poor radar coverage.


2021 ◽  
Vol 13 (15) ◽  
pp. 2873
Author(s):  
Dongmei Xu ◽  
Aiqing Shu ◽  
Hong Li ◽  
Feifei Shen ◽  
Qiang Li ◽  
...  

A new advanced microwave humidity sounder FY-3D MWHS2 radiance has been assimilated under the clear-sky conditions by implementing its data assimilation interface. The case of the tropical storm Ampil in 2018 is selected to address the effectiveness of the new-built module in the initialization and forecast of typhoons. Apart from the experiment assimilating both the Global Telecommunications System (GTS) data and the FY-3D MWHS2 radiance data, an experiment with only GTS data is also conducted for comparison. The results show that the bias correction of this humidity sounder is effective, and the analysis field after assimilating its radiance data matches well with the observation. The increment of specific humidity below the middle layers is evident after the assimilation of the radiance data. Besides, the geopotential height increment and the specific humidity increment at 500 hPa and 850 hPa, respectively, are favorable, resulting in more accurate rain belt distribution and a higher fraction skill score (FSS). In the deterministic forecast, the track error of the FY-3D MWHS2 experiment is consistently less than 90 km.


Author(s):  
M. Morata ◽  
B. Siegmann ◽  
P. Morcillo-Pallares ◽  
J.P. Rivera-Caicedo ◽  
J. Verrelst

Sign in / Sign up

Export Citation Format

Share Document