Restoring Function: Tendon and Nerve Transfers

2021 ◽  
pp. 153-173
Author(s):  
Keith T. Aziz ◽  
Jaimie T. Shores ◽  
John V. Ingari
Keyword(s):  
2005 ◽  
Vol 21 (07) ◽  
Author(s):  
Hakim Said ◽  
Todd Kuiken ◽  
Robert Lipzchutz ◽  
Laura Miller ◽  
Gregory Dumanian

2021 ◽  
Vol 27 (1) ◽  
pp. 87-92
Author(s):  
Brandon W. Smith ◽  
Kate W. C. Chang ◽  
Sravanthi Koduri ◽  
Lynda J. S. Yang

OBJECTIVEThe decision-making in neonatal brachial plexus palsy (NBPP) treatment continues to have many areas in need of clarification. Graft repair was the gold standard until the introduction of nerve transfer strategies. Currently, there is conflicting evidence regarding outcomes in patients with nerve grafts versus nerve transfers in relation to shoulder function. The objective of this study was to further define the outcomes for reconstruction strategies in NBPP with a specific focus on the shoulder.METHODSA cohort of patients with NBPP and surgical repairs from a single center were reviewed. Demographic and standard clinical data, including imaging and electrodiagnostics, were gathered from a clinical database. Clinical data from physical therapy evaluations, including active and passive range of motion, were examined. Statistical analysis was performed on the available data.RESULTSForty-five patients met the inclusion criteria for this study, 19 with graft repair and 26 with nerve transfers. There were no significant differences in demographics between the two groups. Understandably, there were no patients in the nerve grafting group with preganglionic lesions, resulting in a difference in lesion type between the cohorts. There were no differences in preoperative shoulder function between the cohorts. Both groups reached statistically significant improvements in shoulder flexion and shoulder abduction. The nerve transfer group experienced a significant improvement in shoulder external rotation, from −78° to −28° (p = 0.0001), whereas a significant difference was not reached in the graft group. When compared between groups, there appeared to be a trend favoring nerve transfer in shoulder external rotation, with the graft patients improving by 17° and the transfer patients improving by 49° (p = 0.07).CONCLUSIONSIn NBPP, patients with shoulder weakness experience statistically significant improvements in shoulder flexion and abduction after graft repair or nerve transfer, and patients with nerve transfers additionally experience significant improvement in external rotation. With regard to shoulder external rotation, there appear to be some data supporting the use of nerve transfers.


Hand ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 621-626 ◽  
Author(s):  
Hyuma A. Leland ◽  
Beina Azadgoli ◽  
Daniel J. Gould ◽  
Mitchel Seruya

Background: The purpose of this study was to systematically review outcomes following intercostal nerve (ICN) transfer for restoration of elbow flexion, with a focus on identifying the optimal number of nerve transfers. Methods: A systematic review was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to identify studies describing ICN transfers to the musculocutaneous nerve (MCN) for traumatic brachial plexus injuries in patients 16 years or older. Demographics were recorded, including age, time to operation, and level of brachial plexus injury. Muscle strength was scored based upon the British Medical Research Council scale. Results: Twelve studies met inclusion criteria for a total of 196 patients. Either 2 (n = 113), 3 (n = 69), or 4 (n = 11) ICNs were transferred to the MCN in each patient. The groups were similar with regard to patient demographics. Elbow flexion ≥M3 was achieved in 71.3% (95% confidence interval [CI], 61.1%-79.7%) of patients with 2 ICNs, 67.7% (95% CI, 55.3%-78.0%) of patients with 3 ICNs, and 77.0% (95% CI, 44.9%-93.2%) of patients with 4 ICNs ( P = .79). Elbow flexion ≥M4 was achieved in 51.1% (95% CI, 37.4%-64.6%) of patients with 2 ICNs, 42.1% (95% CI, 29.5%-55.9%) of patients with 3 ICNs, and 48.4% (95% CI, 19.2%-78.8%) of patients with 4 ICNs ( P = .66). Conclusions: Previous reports have described 2.5 times increased morbidity with each additional ICN harvest. Based on the equivalent strength of elbow flexion irrespective of the number of nerves transferred, 2 ICNs are recommended to the MCN to avoid further donor-site morbidity.


Hand ◽  
2021 ◽  
pp. 155894472098812
Author(s):  
J. Megan M. Patterson ◽  
Stephanie A. Russo ◽  
Madi El-Haj ◽  
Christine B. Novak ◽  
Susan E. Mackinnon

Background: Radial nerve injuries cause profound disability, and a variety of reconstruction options exist. This study aimed to compare outcomes of tendon transfers versus nerve transfers for the management of isolated radial nerve injuries. Methods: A retrospective chart review of 30 patients with isolated radial nerve injuries treated with tendon transfers and 16 patients managed with nerve transfers was performed. Fifteen of the 16 patients treated with nerve transfer had concomitant pronator teres to extensor carpi radialis brevis tendon transfer for wrist extension. Preoperative and postoperative strength data, Disabilities of the Arm, Shoulder, and Hand (DASH) scores, and quality-of-life (QOL) scores were compared before and after surgery and compared between groups. Results: For the nerve transfer group, patients were significantly younger, time from injury to surgery was significantly shorter, and follow-up time was significantly longer. Both groups demonstrated significant improvements in grip and pinch strength after surgery. Postoperative grip strength was significantly higher in the nerve transfer group. Postoperative pinch strength did not differ between groups. Similarly, both groups showed an improvement in DASH and QOL scores after surgery with no significant differences between the 2 groups. Conclusions: The nerve transfer group demonstrated greater grip strength, but both groups had improved pain, function, and satisfaction postoperatively. Patients who present early and can tolerate longer time to functional recovery would be optimal candidates for nerve transfers. Both tendon transfers and nerve transfers are good options for patients with radial nerve palsy.


Hand ◽  
2021 ◽  
pp. 155894472110146
Author(s):  
J. Ryan Hill ◽  
Steven T. Lanier ◽  
Liz Rolf ◽  
Aimee S. James ◽  
David M. Brogan ◽  
...  

Background There is variability in treatment strategies for patients with brachial plexus injury (BPI). We used qualitative research methods to better understand surgeons’ rationale for treatment approaches. We hypothesized that distal nerve transfers would be preferred over exploration and nerve grafting of the brachial plexus. Methods We conducted semi-structured interviews with BPI surgeons to discuss 3 case vignettes: pan-plexus injury, upper trunk injury, and lower trunk injury. The interview guide included questions regarding overall treatment strategy, indications and utility of brachial plexus exploration, and the role of nerve grafting and/or nerve transfers. Interview transcripts were coded by 2 researchers. We performed inductive thematic analysis to collate these codes into themes, focusing on the role of brachial plexus exploration in the treatment of BPI. Results Most surgeons routinely explore the supraclavicular brachial plexus in situations of pan-plexus and upper trunk injuries. Reasons to explore included the importance of obtaining a definitive root level diagnosis, perceived availability of donor nerve roots, timing of anticipated recovery, plans for distal reconstruction, and the potential for neurolysis. Very few explore lower trunk injuries, citing concern with technical difficulty and unfavorable risk-benefit profile. Conclusions Our analysis suggests that supraclavicular exploration remains a foundational component of surgical management of BPI, despite increasing utilization of distal nerve transfers. Availability of abundant donor axons and establishing an accurate diagnosis were cited as primary reasons in support of exploration. This analysis of surgeon interviews characterizes contemporary practices regarding the role of brachial plexus exploration in the treatment of BPI.


2020 ◽  
Vol 88 (2) ◽  
pp. 363-374
Author(s):  
Jenna‐Lynn B. Senger ◽  
Karyne N. Rabey ◽  
Michael J. Morhart ◽  
K. Ming Chan ◽  
Christine A. Webber

2017 ◽  
Vol 140 (4) ◽  
pp. 747-756 ◽  
Author(s):  
Kathleen M. O’Grady ◽  
Hollie A. Power ◽  
Jaret L. Olson ◽  
Michael J. Morhart ◽  
A. Robertson Harrop ◽  
...  

2004 ◽  
Vol 101 (5) ◽  
pp. 770-778 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Marcos Flávio Ghizoni

Object. The goal of this study was to evaluate outcomes in patients with brachial plexus avulsion injuries who underwent contralateral motor rootlet and ipsilateral nerve transfers to reconstruct shoulder abduction/external rotation and elbow flexion. Methods. Within 6 months after the injury, 24 patients with a mean age of 21 years underwent surgery in which the contralateral C-7 motor rootlet was transferred to the suprascapular nerve by using sural nerve grafts. The biceps motor branch or the musculocutaneous nerve was repaired either by an ulnar nerve fascicular transfer or by transfer of the 11th cranial nerve or the phrenic nerve. The mean recovery in abduction was 90° and 92° in external rotation. In cases of total palsy, only two patients recovered external rotation and in those cases mean external rotation was 70°. Elbow flexion was achieved in all cases. In cases of ulnar nerve transfer, the muscle scores were M5 in one patient, M4 in six patients, and M3+ in five patients. Elbow flexion repair involving the use of the 11th cranial nerve resulted in a score of M3+ in five patients and M4 in two patients. After surgery involving the phrenic nerve, two patients received a score of M3+ and two a score of M4. Results were clearly better in patients with partial lesions and in those who were shorter than 170 cm (p < 0.01). The length of the graft used in motor rootlet transfers affected only the recovery of external rotation. There was no permanent injury at the donor sites. Conclusions. Motor rootlet transfer represents a reliable and potent neurotizer that allows the reconstruction of abduction and external rotation in partial injuries.


2004 ◽  
Vol 16 (5) ◽  
pp. 313-318
Author(s):  
Thomas H. Tung ◽  
Christine B. Novak ◽  
Susan E. Mackinnon

Object In this study the authors evaluated the outcome in patients with brachial plexus injuries who underwent nerve transfers to the biceps and the brachialis branches of the musculocutaneous nerve. Methods The charts of eight patients who underwent an ulnar nerve fascicle transfer to the biceps branch of the musculocutaneous nerve and a separate transfer to the brachialis branch were retrospectively reviewed. Outcome was assessed using the Medical Research Council (MRC) grade to classify elbow flexion strength in conjunction with electromyography (EMG). The mean patient age was 26.4 years (range 16–45 years) and the mean time from injury to surgery was 3.8 months (range 2.5–7.5 months). Recovery of elbow flexion was MRC Grade 4 in five patients, and Grade 4+in three. Reinnervation of both the biceps and brachialis muscles was confirmed on EMG studies. Ulnar nerve function was not downgraded in any patient. Conclusions The use of nerve transfers to reinnervate the biceps and brachialis muscle provides excellent elbow flexion strength in patients with brachial plexus nerve injuries.


Sign in / Sign up

Export Citation Format

Share Document