contralateral motor
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Dong Hyun Kim ◽  
Kun-Do Lee ◽  
Thomas C Bulea ◽  
Hyung-Soon Park

Abstract Background: Mirror therapy (MT) has been used for functional recovery of the affected hand by providing the mirrored image of the unaffected hand movement, which induces neural activation of the contralateral cortical hemisphere. Recently, many wearable robots assisting the movement of the hand have been developed, and several studies have proposed robotic mirror therapy (RMT) that provides mirrored movements of the unaffected hand on the affected hand with the robot controlled by electromyography or posture of the unaffected hand. There have been limited evaluations of the cortical activity during RMT compared to MT and robotic therapy (RT) providing passive movements despite the difference in the modality of sensory feedback and the involvement of motor intention, respectively. Methods: This paper analyzes bilateral motor cortex activation in nine healthy subjects and five chronic stroke survivors during a pinching task performed in MT, RT, and RMT conditions using functional near infrared spectroscopy (fNIRS). In the MT condition, the person moved the unaffected hand and observed it in a mirror while the affected hand remained still. In RT condition passive movements were provided to the affected hand with a cable-driven soft robotic glove, while, in RMT condition, the posture of the unaffected hand was measured by a sensing glove and the soft robotic glove mirrored its movement on the affected hand. Results: For both groups, the RMT condition showed the greatest mean cortical activation on the contralateral motor cortex compared to other conditions. Individual results indicate that RMT induces similar or greater neural activation on the motor cortex compared to MT and RT conditions. The interhemispheric activations of both groups were balanced in RMT condition. In MT condition, significantly greater activation was shown on the ipsilateral side for both subject groups, while the contralateral side showed significantly greater activation for healthy in RT condition. Conclusion: The experimental results indicate that combining visual feedback, somatosensory feedback, and motor intention are important for greater stimulation on the contralateral motor cortex of the affected hand. RMT that includes these factors is hypothesized to achieve a more effective functional rehabilitation due to greater and more balanced cortical activation.


2020 ◽  
Vol 4 (3) ◽  
pp. 380-383
Author(s):  
Benjamin Boodale ◽  
Manish Amin ◽  
Katayoun Sabetian ◽  
Daniel Quesada ◽  
Tyler Torrico

Introduction: Patients with acute unilateral upper and lower facial palsy frequently present to the emergency department fearing they have had a stroke, but many cases are benign Bell’s palsy. Case Report: We present a rare case of a medial pontomedullary junction stroke causing upper and lower hemifacial paralysis associated with severe dysphagia and contralateral face and arm numbness. Conclusion: Although rare, pontine infarct must be considered in patients who present with both upper and lower facial weakness. Unusual neurologic symptoms (namely diplopia, vertigo, or dysphagia) and signs (namely gaze palsy, nystagmus, or contralateral motor or sensory deficits) should prompt evaluation for stroke.


2020 ◽  
Vol 223 (16) ◽  
pp. jeb221010
Author(s):  
Ritwika Mukherjee ◽  
Daniel P. Caron ◽  
Timothy Edson ◽  
Barry A. Trimmer

ABSTRACTIn response to a noxious stimulus on the abdomen, caterpillars lunge their head towards the site of stimulation. This nocifensive ‘strike’ behavior is fast (∼0.5 s duration), targeted and usually unilateral. It is not clear how the fast strike movement is generated and controlled, because caterpillar muscle develops peak force relatively slowly (∼1 s) and the baseline hemolymph pressure is low (<2 kPa). Here, we show that strike movements are largely driven by ipsilateral muscle activation that propagates from anterior to posterior segments. There is no sustained pre-strike muscle activation that would be expected for movements powered by the rapid release of stored elastic energy. Although muscle activation on the ipsilateral side is correlated with segment shortening, activity on the contralateral side consists of two phases of muscle stimulation and a marked decline between them. This decrease in motor activity precedes rapid expansion of the segment on the contralateral side, presumably allowing the body wall to stretch more easily. The subsequent increase in contralateral motor activation may slow or stabilize movements as the head reaches its target. Strike behavior is therefore a controlled fast movement involving the coordination of muscle activity on each side and along the length of the body.


2020 ◽  
Vol 33 (5) ◽  
pp. 613-617 ◽  
Author(s):  
Francesco Di Lorenzo ◽  
Sonia Bonnì ◽  
Silvia Picazio ◽  
Caterina Motta ◽  
Carlo Caltagirone ◽  
...  

2020 ◽  
Vol 30 (10) ◽  
pp. 5400-5409
Author(s):  
John E Downey ◽  
Kristin M Quick ◽  
Nathaniel Schwed ◽  
Jeffrey M Weiss ◽  
George F Wittenberg ◽  
...  

Abstract Motor commands for the arm and hand generally arise from the contralateral motor cortex, where most of the relevant corticospinal tract originates. However, the ipsilateral motor cortex shows activity related to arm movement despite the lack of direct connections. The extent to which the activity related to ipsilateral movement is independent from that related to contralateral movement is unclear based on conflicting conclusions in prior work. Here we investigate bilateral arm and hand movement tasks completed by two human subjects with intracortical microelectrode arrays implanted in the left hand and arm area of the motor cortex. Neural activity was recorded while they attempted to perform arm and hand movements in a virtual environment. This enabled us to quantify the strength and independence of motor cortical activity related to continuous movements of each arm. We also investigated the subjects’ ability to control both arms through a brain–computer interface. Through a number of experiments, we found that ipsilateral arm movement was represented independently of, but more weakly than, contralateral arm movement. However, the representation of grasping was correlated between the two hands. This difference between hand and arm representation was unexpected and poses new questions about the different ways the motor cortex controls the hands and arms.


2020 ◽  
Author(s):  
Vivek Kurien George ◽  
Francesca Puppo ◽  
Gabriel A. Silva

AbstractUnderstanding how the structural connectivity of a network constrains the dynamics it is able to support is a very active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way, independent of the biophysical or molecular details of the cells themselves. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motor neuron activations in ventral (VB) and dorsal (DB) classes of motor neurons emerged from the simulations, which are qualitatively similar to rhythmic motor neuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent - and we propose - purposeful structural wiring to the C. elegans connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.


2019 ◽  
Vol 20 (22) ◽  
pp. 5770 ◽  
Author(s):  
Margarita Heredia ◽  
Natalia Rodríguez ◽  
Virginia Sánchez Robledo ◽  
José María Criado ◽  
Antonio de la Fuente ◽  
...  

Previously we demonstrated, in rats, that treatment with growth hormone (GH) and rehabilitation, carried out immediately after a motor cortical ablation, significantly improved the motor affectation produced by the lesion and induced the re-expression of nestin in the contralateral motor cortex. Here we analyze cortical proliferation after ablation of the frontal motor cortex and investigate the re-expression of nestin in the contralateral motor cortex and the role of the striatum and thalamus in motor recovery. The rats were subjected to ablation of the frontal motor cortex in the dominant hemisphere or sham-operated and immediately treated with GH or the vehicle (V), for five days. At 1 dpi (days post-injury), all rats received daily injections (for four days) of bromodeoxyuridine and five rats were sacrificed at 5 dpi. The other 15 rats (n = 5/group) underwent rehabilitation and were sacrificed at 25 dpi. GH induced the greatest number of proliferating cells in the perilesional cortex. GH and rehabilitation produced the functional recovery of the motor lesion and increased the expression of nestin in the striatum. In the thalamic ventral nucleus ipsilateral to the lesion, cells positive for nestin and actin were detected, but this was independent on GH. Our data suggest that GH-induced striatal nestin is involved in motor recovery.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ethan A Heming ◽  
Kevin P Cross ◽  
Tomohiko Takei ◽  
Douglas J Cook ◽  
Stephen H Scott

Several lines of research demonstrate that primary motor cortex (M1) is principally involved in controlling the contralateral side of the body. However, M1 activity has been correlated with both contralateral and ipsilateral limb movements. Why does ipsilaterally-related activity not cause contralateral motor output? To address this question, we trained monkeys to counter mechanical loads applied to their right and left limbs. We found >50% of M1 neurons had load-related activity for both limbs. Contralateral loads evoked changes in activity ~10ms sooner than ipsilateral loads. We also found corresponding population activities were distinct, with contralateral activity residing in a subspace that was orthogonal to the ipsilateral activity. Thus, neural responses for the contralateral limb can be extracted without interference from the activity for the ipsilateral limb, and vice versa. Our results show that M1 activity unrelated to downstream motor targets can be segregated from activity related to the downstream motor output.


Sign in / Sign up

Export Citation Format

Share Document