Research on Geo/Geo/1 Retrial Queue with Working Vacation Interruption and Nonpersistent Customers

Author(s):  
Mingcong Wu ◽  
Yong Huang ◽  
Yang Song ◽  
Liang Zhao ◽  
Jian Liu
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Li Tao ◽  
Liyuan Zhang ◽  
Shan Gao

We consider an M/M/1 retrial queue with working vacations, vacation interruption, Bernoulli feedback, and N-policy simultaneously. During the working vacation period, customers can be served at a lower rate. Using the matrix-analytic method, we get the necessary and sufficient condition for the system to be stable. Furthermore, the stationary probability distribution and some performance measures are also derived. Moreover, we prove the conditional stochastic decomposition for the queue length in the orbit. Finally, we present some numerical examples and use the parabolic method to search the optimum value of service rate in working vacation period.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Tao Li ◽  
Liyuan Zhang ◽  
Shan Gao

An M/M/1 retrial queue with working vacation interruption is considered. Upon the arrival of a customer, if the server is busy, it would join the orbit of infinite size. The customers in the orbit will try for service one by one when the server is idle under the classical retrial policy with retrial ratenα, wherenis the size of the orbit. During a working vacation period, if there are customers in the system at a service completion instant, the vacation will be interrupted. Under the stable condition, the probability generating functions of the number of customers in the orbit are obtained. Various system performance measures are also developed. Finally, some numerical examples and cost optimization analysis are presented.


2012 ◽  
Vol 46 (4) ◽  
pp. 355-371 ◽  
Author(s):  
Li Tao ◽  
Zaiming Liu ◽  
Zhizhong Wang

2014 ◽  
Vol 31 (02) ◽  
pp. 1440006 ◽  
Author(s):  
SHAN GAO ◽  
JINTING WANG ◽  
WEI WAYNE LI

We consider an M/G/1 retrial queue with general retrial times, and introduce working vacations and vacation interruption policy into the retrial queue. During the working vacation period, customers can be served at a lower rate. If there are customers in the system at a service completion instant, the vacation will be interrupted and the server will come back to the normal working level. Using supplementary variable method, we obtain the stationary probability distribution and some performance measures. Furthermore, we carry out the waiting time distribution and prove the conditional stochastic decomposition for the queue length in orbit. Finally, some numerical examples are presented.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 448
Author(s):  
P. Manoharan ◽  
A. Ashok

This work deals with M/M/1 queue with Vacation and Vacation Interruption Under Bernoulli schedule. When there are no customers in the system, the server takes a classical vacation with probability p or a working vacation with probability 1-p, where . At the instants of service completion during the working vacation, either the server is supposed to interrupt the vacation and returns back to the non-vacation period with probability 1-q or the sever will carry on with the vacation with probability q. When the system is non empty after the end of vacation period, a new non vacation period begins. A matrix geometric approach is employed to obtain the stationary distribution for the mean queue length and the mean waiting time and their stochastic decomposition structures. Numerous graphical demonstrations are presented to show the effects of the system parameters on the performance measures.  


2016 ◽  
Vol 8 (5) ◽  
pp. 56 ◽  
Author(s):  
Ehmet Kasim

By using the strong continuous semigroup theory of linear operators we prove that the M/G/1 queueing model with working vacation and vacation interruption has a unique positive time dependent solution which satisfies probability conditions. When the both service completion rate in a working vacation period and in a regular busy period are constant, by investigating the spectral properties of an operator corresponding to the model we obtain that the time-dependent solution of the model strongly converges to its steady-state solution.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
P. Vijaya Laxmi ◽  
V. Suchitra

We study a finite buffer N-policy GI/M(n)/1 queue with Bernoulli-schedule vacation interruption. The server works with a slower rate during vacation period. At a service completion epoch during working vacation, if there are at least N customers present in the queue, the server interrupts vacation and otherwise continues the vacation. Using the supplementary variable technique and recursive method, we obtain the steady state system length distributions at prearrival and arbitrary epochs. Some special cases of the model, various performance measures, and cost analysis are discussed. Finally, parameter effect on the performance measures of the model is presented through numerical computations.


Sign in / Sign up

Export Citation Format

Share Document