scholarly journals Finite Buffer GI/M(n)/1 Queue with Bernoulli-Schedule Vacation Interruption under N-Policy

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
P. Vijaya Laxmi ◽  
V. Suchitra

We study a finite buffer N-policy GI/M(n)/1 queue with Bernoulli-schedule vacation interruption. The server works with a slower rate during vacation period. At a service completion epoch during working vacation, if there are at least N customers present in the queue, the server interrupts vacation and otherwise continues the vacation. Using the supplementary variable technique and recursive method, we obtain the steady state system length distributions at prearrival and arbitrary epochs. Some special cases of the model, various performance measures, and cost analysis are discussed. Finally, parameter effect on the performance measures of the model is presented through numerical computations.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
P. Vijaya Laxmi ◽  
V. Goswami ◽  
K. Jyothsna

This paper analyzes a finite buffer multiple working vacations queue with balking, reneging, and vacation interruption underN-policy. In the working vacation, a customer is served at a lower rate and at the instants of a service completion; if there are at leastNcustomers in the queue, the vacation is interrupted and the server switches to regular busy period otherwise continues the vacation. Using Markov process and recursive technique, we derive the stationary system length distributions at arbitrary epoch. Various performance measures and some special models of the system are presented. Cost analysis is carried out using particle swarm optimization and quadratic fit search method. Finally, some numerical results showing the effect of model parameters on key performance measures of the system are presented.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 448
Author(s):  
P. Manoharan ◽  
A. Ashok

This work deals with M/M/1 queue with Vacation and Vacation Interruption Under Bernoulli schedule. When there are no customers in the system, the server takes a classical vacation with probability p or a working vacation with probability 1-p, where . At the instants of service completion during the working vacation, either the server is supposed to interrupt the vacation and returns back to the non-vacation period with probability 1-q or the sever will carry on with the vacation with probability q. When the system is non empty after the end of vacation period, a new non vacation period begins. A matrix geometric approach is employed to obtain the stationary distribution for the mean queue length and the mean waiting time and their stochastic decomposition structures. Numerous graphical demonstrations are presented to show the effects of the system parameters on the performance measures.  


1996 ◽  
Vol 33 (01) ◽  
pp. 239-255 ◽  
Author(s):  
M. L. Chaudhry ◽  
U. C. Gupta

This paper presents an analysis of the single-server discrete-time finite-buffer queue with general interarrival and geometric service time,GI/Geom/1/N. Using the supplementary variable technique, and considering the remaining interarrival time as a supplementary variable, two variations of this model, namely the late arrival system with delayed access (LAS-DA) and early arrival system (EAS), have been examined. For both cases, steady-state distributions for outside observers as well as at random and prearrival epochs have been obtained. The waiting time analysis has also been carried out. Results for theGeom/G/1/Nqueue with LAS-DA have been obtained from theGI/Geom/1/Nqueue with EAS. We also give various performance measures. An algorithm for computing state probabilities is given in an appendix.


1996 ◽  
Vol 33 (1) ◽  
pp. 239-255 ◽  
Author(s):  
M. L. Chaudhry ◽  
U. C. Gupta

This paper presents an analysis of the single-server discrete-time finite-buffer queue with general interarrival and geometric service time, GI/Geom/1/N. Using the supplementary variable technique, and considering the remaining interarrival time as a supplementary variable, two variations of this model, namely the late arrival system with delayed access (LAS-DA) and early arrival system (EAS), have been examined. For both cases, steady-state distributions for outside observers as well as at random and prearrival epochs have been obtained. The waiting time analysis has also been carried out. Results for the Geom/G/1/N queue with LAS-DA have been obtained from the GI/Geom/1/N queue with EAS. We also give various performance measures. An algorithm for computing state probabilities is given in an appendix.


2014 ◽  
Vol 31 (01) ◽  
pp. 1450003 ◽  
Author(s):  
SHAN GAO ◽  
ZAIMING LIU ◽  
QIWEN DU

In this paper, we study a discrete-time finite buffer batch arrival queue with multiple geometric working vacations and vacation interruption: the server serves the customers at the lower rate rather than completely stopping during the vacation period and can come back to the normal working level once there are customers after a service completion during the vacation period, i.e., a vacation interruption happens. The service times during a service period, service times during a vacation period and vacation times are geometrically distributed. The queue is analyzed using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at pre-arrival, arbitrary and outside observer's observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Veena Goswami

This paper analyzes customers’ impatience in Markovian queueing system with multiple working vacations and Bernoulli schedule vacation interruption, where customers’ impatience is due to the servers’ vacation. During the working vacation period, if there are customers in the queue, the vacation can be interrupted at a service completion instant and the server begins a regular busy period with probability 1-q or continues the vacation with probability q. We obtain the probability generating functions of the stationary state probabilities and deduce the explicit expressions of the system sizes when the server is in a normal service period and in a Bernoulli schedule vacation interruption, respectively. Various performance measures such as the mean system size, the proportion of customers served, the rate of abandonment due to impatience, and the mean sojourn time of a customer served are derived. We obtain the stochastic decomposition structures of the queue length and waiting time. Finally, some numerical results to show the impact of model parameters on performance measures of the system are presented.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440006 ◽  
Author(s):  
SHAN GAO ◽  
JINTING WANG ◽  
WEI WAYNE LI

We consider an M/G/1 retrial queue with general retrial times, and introduce working vacations and vacation interruption policy into the retrial queue. During the working vacation period, customers can be served at a lower rate. If there are customers in the system at a service completion instant, the vacation will be interrupted and the server will come back to the normal working level. Using supplementary variable method, we obtain the stationary probability distribution and some performance measures. Furthermore, we carry out the waiting time distribution and prove the conditional stochastic decomposition for the queue length in orbit. Finally, some numerical examples are presented.


2013 ◽  
Vol 4 (1) ◽  
pp. 1-24 ◽  
Author(s):  
P. Vijaya Laxmi ◽  
V. Goswami ◽  
K. Jyothsna

This article presents the analysis of a finite buffer M/M/1 queue with multiple and single working vacations. The arriving customers balk (that is do not join the queue) with a probability and renege (that is leave the queue after joining) according to exponential distribution. The inter-arrival times, service times during a regular service period, service times during a vacation period and vacation times are independent and exponentially distributed random variables. Steady-state behavior of the model is considered and various performance measures, some special cases of the model and cost analysis are discussed.


2021 ◽  
Vol 13 (2) ◽  
pp. 367-395
Author(s):  
Shakir Majid ◽  
Amina Angelika Bouchentouf ◽  
Abdelhak Guendouzi

Abstract In this investigation, we establish a steady-state solution of an infinite-space single-server Markovian queueing system with working vacation (WV), Bernoulli schedule vacation interruption, and impatient customers. Once the system becomes empty, the server leaves the system and takes a vacation with probability p or a working vacation with probability 1 − p, where 0 ≤ p ≤ 1. The working vacation period is interrupted if the system is non empty at a service completion epoch and the server resumes its regular service period with probability 1 − q or carries on with the working vacation with probability q. During vacation and working vacation periods, the customers may be impatient and leave the system. We use a probability generating function technique to obtain the expected number of customers and other system characteristics. Stochastic decomposition of the queueing model is given. Then, a cost function is constructed by considering different cost elements of the system states, in order to determine the optimal values of the service rate during regular busy period, simultaneously, to minimize the total expected cost per unit time by using a quadratic fit search method (QFSM). Further, by taking illustration, numerical experiment is performed to validate the analytical results and to examine the impact of different parameters on the system characteristics.


2016 ◽  
Vol 8 (5) ◽  
pp. 56 ◽  
Author(s):  
Ehmet Kasim

By using the strong continuous semigroup theory of linear operators we prove that the M/G/1 queueing model with working vacation and vacation interruption has a unique positive time dependent solution which satisfies probability conditions. When the both service completion rate in a working vacation period and in a regular busy period are constant, by investigating the spectral properties of an operator corresponding to the model we obtain that the time-dependent solution of the model strongly converges to its steady-state solution.


Sign in / Sign up

Export Citation Format

Share Document