Cognitive Vehicle Design Guided by Human Factors and Supported by Bayesian Artificial Intelligence

Author(s):  
Ata Khan
Author(s):  
Maryam Rahimi Movassagh ◽  
Nazila Roofigari-Esfahan ◽  
Sang Won Lee ◽  
Carlos Evia ◽  
David Hicks ◽  
...  

Construction sites experience low productivity due to particular characteristics such as unique designs in each project, sporadic arrival of projects, and complexity of the process. Another contributing factor to low productivity is poor communication among workers, supervisors, and a site’s centralized knowledge hub. Research shows that introducing advanced artificial intelligence (AI) technology in construction can tackle these problems. In this paper, we analyzed human factors considerations–user, task, environment, and technology and identified their characteristics and challenges to design an interactive AI system to facilitate communication between workers and other stakeholders. Based on the analysis, we propose a voice-based intelligent virtual agent (VIVA) as a multi-purpose AI system on construction sites with a further research agenda. We hope that this effort can guide the design of construction-specific AI systems and that this worker-AI teaming can improve overall work processes, enhance productivity, and promote safety in construction.


2019 ◽  
Vol 26 (1) ◽  
pp. e100081 ◽  
Author(s):  
Mark Sujan ◽  
Dominic Furniss ◽  
Kath Grundy ◽  
Howard Grundy ◽  
David Nelson ◽  
...  

The use of artificial intelligence (AI) in patient care can offer significant benefits. However, there is a lack of independent evaluation considering AI in use. The paper argues that consideration should be given to how AI will be incorporated into clinical processes and services. Human factors challenges that are likely to arise at this level include cognitive aspects (automation bias and human performance), handover and communication between clinicians and AI systems, situation awareness and the impact on the interaction with patients. Human factors research should accompany the development of AI from the outset.


Author(s):  
Lorenzo Barberis Canonico ◽  
Christopher Flathmann ◽  
Nathan McNeese

There is an ever-growing literature on the power of prediction markets to harness “the wisdom of the crowd” from large groups of people. However, traditional prediction markets are not designed in a human-centered way, often restricting their own potential. This creates the opportunity to implement a cognitive science perspective on how to enhance the collective intelligence of the participants. Thus, we propose a new model for prediction markets that integrates human factors, cognitive science, game theory and machine learning to maximize collective intelligence. We do this by first identifying the connections between prediction markets and collective intelligence, to then use human factors techniques to analyze our design, culminating in the practical ways with which our design enables artificial intelligence to complement human intelligence.


Sign in / Sign up

Export Citation Format

Share Document