Closeness Constraints for Separation of Duties in Cloud Databases as an Optimization Problem

Author(s):  
Ferdinand Bollwein ◽  
Lena Wiese
TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 607-618
Author(s):  
JÉSSICA MOREIRA ◽  
BRUNO LACERDA DE OLIVEIRA CAMPOS ◽  
ESLY FERREIRA DA COSTA JUNIOR ◽  
ANDRÉA OLIVEIRA SOUZA DA COSTA

The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.


2020 ◽  
Vol 2020 (14) ◽  
pp. 306-1-306-6
Author(s):  
Florian Schiffers ◽  
Lionel Fiske ◽  
Pablo Ruiz ◽  
Aggelos K. Katsaggelos ◽  
Oliver Cossairt

Imaging through scattering media finds applications in diverse fields from biomedicine to autonomous driving. However, interpreting the resulting images is difficult due to blur caused by the scattering of photons within the medium. Transient information, captured with fast temporal sensors, can be used to significantly improve the quality of images acquired in scattering conditions. Photon scattering, within a highly scattering media, is well modeled by the diffusion approximation of the Radiative Transport Equation (RTE). Its solution is easily derived which can be interpreted as a Spatio-Temporal Point Spread Function (STPSF). In this paper, we first discuss the properties of the ST-PSF and subsequently use this knowledge to simulate transient imaging through highly scattering media. We then propose a framework to invert the forward model, which assumes Poisson noise, to recover a noise-free, unblurred image by solving an optimization problem.


Author(s):  
Eter Basar ◽  
Ankur Pan Saikia ◽  
L. P. Saikia

Data Technology industry has been utilizing the customary social databases for around 40 years. Be that as it may, in the latest years, there was a generous transformation in the IT business as far as business applications. Remain solitary applications have been supplanted with electronic applications, conferred servers with different proper servers and committed stockpiling with framework stockpiling. Lower expense, adaptability, the model of pay-as-you-go are the fundamental reasons, which caused the conveyed processing are transformed into reality. This is a standout amongst the hugest upsets in Information Technology, after the development of the Internet. Cloud databases, Big Table, Sherpa, and SimpleDB are getting the opportunity to be more natural to groups. They featured the hindrances of current social databases as far as convenience, adaptability, and provisioning. Cloud databases are basically utilized for data raised applications, for example, stockpiling and mining of gigantic information or business information. These applications are adaptable and multipurpose in nature. Various esteem based data organization applications, such as managing an account, online reservation, e-exchange and stock organization, and so on are delivered. Databases with the help of these sorts of uses need to incorporate four essential highlights: Atomicity, Consistency, Isolation, and Durability (ACID), in spite of the fact that utilizing these databases isn't basic for utilizing as a part of the cloud. The objective of this paper is to discover the points of interest and disservices of databases generally utilized in cloud frameworks and to survey the difficulties in creating cloud databases


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


Sign in / Sign up

Export Citation Format

Share Document