Model-Based Engineering: Analysis of Alternatives for Optical Satellite Observation

Author(s):  
D. A. Shultz ◽  
J. M. Colombi ◽  
D. R. Jacques ◽  
R. G. Cobb
Author(s):  
Randy K Buchanan ◽  
Simon R Goerger ◽  
Christina H Rinaudo ◽  
Greg Parnell ◽  
Adam Ross ◽  
...  

Dynamically transforming mission contexts in conjunction with ever-increasing budgetary constraints provides great impetus for the Department of Defense (DoD) to identify resilient systems early in the design process. The engineered resilient systems (ERS) community of interest (COI) research efforts focus on identifying and quantifying methods to perform systems engineering analysis in a model-based physics-driven environment. Research conducted has approached resiliency from various perspectives, including inherent resilience, mission and platform resilience, and value-driven resilient tradespace. This article examines resilience in an ERS context and presents multiple perspectives of resilience for consideration when developing modeling and simulation platforms to support analysis of systems under acquisition consideration.


Author(s):  
Hongman Kim ◽  
David Fried ◽  
Peter Menegay ◽  
Grant Soremekun

Model-based systems engineering (MBSE) is an approach to improve traditional document-based systems engineering approach through the use of a system model. In the current practice of system developments, there exists a large gap between systems engineering activities and engineering analyses, because systems engineers and engineering analysts are using different models, tools and terminology. The gap results in inefficiencies and quality issues that can be very expensive. This work presents an integrated modeling and analysis capability that bridges the gap. The technical approach is based on integrating SysML modeling tools with process integration and design optimization framework. This approach connects SysML models with various engineering analysis tools through a common interface. A capability was developed to automatically generate analysis models from a system model and then execute the analytical models. Requirements conformance analysis was performed using results of engineering analysis. A technique was developed to define optimization problems in SysML, where requirements were used as design constraints. The integrated system modeling and analysis capability was demonstrated using an automobile brake pad design example. The integrated toolset was used to understand impacts of requirements changes in the SysML model and to find a new design that meets the new requirements through engineering design optimization.


Systems ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 84
Author(s):  
Sebastian Kirmse ◽  
Robert J. Cloutier ◽  
Kuang-Ting Hsiao

Nanocomposites provide outstanding benefits and possibilities compared to traditional composites but struggle to make it into the market due to the complexity and large number of associated challenges involved in, as well as lack of standards for, nanocomposite commercialization. This article proposes a commercialization framework utilizing market analysis and systems engineering to support the commercialization process of such high technologies. The article demonstrates the importance and usefulness of utilizing Model-Based Systems Engineering throughout the commercialization process of nanocomposite technologies when combining it with the Lean LaunchPad approach and an engineering analysis. The framework was validated using a qualitative research method with a case study approach. Applying this framework to a nanocomposite, called ZT-CFRP technology, showed tremendous impacts on the commercialization process, such as reduced market and technological uncertainties, which limits the commercialization risk and increases the chance for capital funding. Furthermore, utilizing the framework helped to decrease the commercialization time and cost due to the use of a lean engineering analysis. This framework is intended to assist advanced material-based companies, material scientists, researchers and entrepreneurs in academia and the industry during the commercialization process by minimizing uncertainties and risks, while focusing resources to reduce time-to-market and development costs.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Author(s):  
Charles Bouveyron ◽  
Gilles Celeux ◽  
T. Brendan Murphy ◽  
Adrian E. Raftery

Sign in / Sign up

Export Citation Format

Share Document