A Burns–Krantz-type Theorem for Pseudo-contractive Mappings

Author(s):  
Marina Levenshtein ◽  
David Shoikhet
Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4587-4612 ◽  
Author(s):  
S.K. Padhan ◽  
Rao Jagannadha ◽  
Hemant Nashine ◽  
R.P. Agarwal

This paper extends and generalizes results of Mukheimer [(?,?,?)-contractive mappings in ordered partial b-metric spaces, J. Nonlinear Sci. Appl. 7(2014), 168-179]. A new concept of (?-?1-?2)-contractive mapping using two altering distance functions in ordered b-metric-like space is introduced and basic fixed point results have been studied. Useful examples are illustrated to justify the applicability and effectiveness of the results presented herein. As an application, the existence of solution of fourth-order two-point boundary value problems is discussed and rationalized by a numerical example.


2017 ◽  
Vol 37 (1) ◽  
pp. 9-20
Author(s):  
Manoj Kumar ◽  
Serkan Araci

Samet et. al. (Nonlinear Anal. 75, 2012, 2154-2165) introduced the concept of alpha-psi-contractive type mappings in metric spaces. In 2013, Alghamdi et. al. [2] introduced the concept of G-β--contractive type mappings in G-metric spaces. Our aim is to introduce new concept of generalized G-η-χ-contractive pair of mappings. Further, we study some fixed point theorems for such mappings in complete G-metric spaces. As an application, we further establish common fixed point theorems for G-metric spaces for cyclic contractive mappings.


Positivity ◽  
2016 ◽  
Vol 21 (1) ◽  
pp. 61-72
Author(s):  
L. Livshits ◽  
G. MacDonald ◽  
H. Radjavi

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Meixia Li ◽  
Xueling Zhou ◽  
Haitao Che

Abstract In this paper, we are concerned with the split equality common fixed point problem. It is a significant generalization of the split feasibility problem, which can be used in various disciplines, such as medicine, military and biology, etc. We propose an alternating iteration algorithm for solving the split equality common fixed point problem with L-Lipschitz and quasi-pseudo-contractive mappings and prove that the sequence generated by the algorithm converges weakly to the solution of this problem. Finally, some numerical results are shown to confirm the feasibility and efficiency of the proposed algorithm.


Author(s):  
Yunru Bai ◽  
Nikolaos S. Papageorgiou ◽  
Shengda Zeng

AbstractWe consider a parametric nonlinear, nonhomogeneous Dirichlet problem driven by the (p, q)-Laplacian with a reaction involving a singular term plus a superlinear reaction which does not satisfy the Ambrosetti–Rabinowitz condition. The main goal of the paper is to look for positive solutions and our approach is based on the use of variational tools combined with suitable truncations and comparison techniques. We prove a bifurcation-type theorem describing in a precise way the dependence of the set of positive solutions on the parameter $$\lambda $$ λ . Moreover, we produce minimal positive solutions and determine the monotonicity and continuity properties of the minimal positive solution map.


2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


Sign in / Sign up

Export Citation Format

Share Document