Connection Between the Discrete Fourier Transform and the Fourier Transform.

Author(s):  
Valery Serov
2008 ◽  
Vol 3 (4) ◽  
pp. 74-86
Author(s):  
Boris A. Knyazev ◽  
Valeriy S. Cherkasskij

The article is intended to the students, who make their first steps in the application of the Fourier transform to physics problems. We examine several elementary examples from the signal theory and classic optics to show relation between continuous and discrete Fourier transform. Recipes for correct interpretation of the results of FDFT (Fast Discrete Fourier Transform) obtained with the commonly used application programs (Matlab, Mathcad, Mathematica) are given.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Pranesh Kumar ◽  
Arthur Western

The analysis of pulsars is a complicated procedure due to the influence of background radio waves. Special radio telescopes designed to detect pulsar signals have to employ many techniques to reconstruct interstellar signals and determine if they originated from a pulsating radio source. The Discrete Fourier Transform on its own has allowed astronomers to perform basic spectral analysis of potential pulsar signals. However, Radio Frequency Interference (RFI) makes the process of detecting and analyzing pulsars extremely difficult. This has forced astronomers to be creative in identifying and determining the specific characteristics of these unique rotating neutron stars. Astrophysicists have utilized algorithms such as the Fast Fourier Transform (FFT) to predict the spin period and harmonic frequencies of pulsars. However, FFT-based searches cannot be utilized alone because low-frequency pulsar signals go undetected in the presence of background radio noise. Astrophysicists must stack up pulses using the Fast Folding Algorithm (FFA) and utilize the coherent dedispersion technique to improve FFT sensitivity. The following research paper will discuss how the Discrete Fourier Transform is a useful technique for detecting radio signals and determining the pulsar frequency. It will also discuss how dedispersion and the pulsar frequency are critical for predicting multiple characteristics of pulsars and correcting the influence of the Interstellar Medium (ISM).


2013 ◽  
Vol 680 ◽  
pp. 521-525
Author(s):  
Shu Wei Qu ◽  
Zhi Hong Guo ◽  
Fan Wang

Fatigue has a serious influence on people’s production and life. In this paper, which using the discrete Fourier transform algorithm to segment and extract person's facial image, so we can have a effective monitoring of people’s fatigue state base on the facial characteristic. With the help of the parameters characteristic of the Fourier transform, we can extract the key facial information from the image and achieve accurate position of the eyes. Simulation results show that the use of discrete Fourier transform to the exact position of the human eye, having a greatly improve on the operation speed of the eyes position system, and improving its accuracy and robustness.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1707-1709
Author(s):  
Michael J. Reed ◽  
Hung V. Nguyen ◽  
Ronald E. Chambers

The Fourier transform and its computationally efficient discrete implementation, the fast Fourier transform (FFT), are omnipresent in geophysical processing. While a general implementation of the discrete Fourier transform (DFT) will take on the order [Formula: see text] operations to compute the transform of an N point sequence, the FFT algorithm accomplishes the DFT with an operation count proportional to [Formula: see text] When a large percentage of the output coefficients of the transform are not desired, or a majority of the inputs to the transform are zero, it is possible to further reduce the computation required to perform the DFT. Here, we review one possible approach to accomplishing this reduction and indicate its application to phase‐shift migration.


Author(s):  
Jens V. Fischer

Four Fourier transforms are usually defined, the Integral Fourier transform, the Discrete-Time Fourier transform (DTFT), the Discrete Fourier transform (DFT) and the Integral Fourier transform for periodic functions. However, starting from their definitions, we show that all four Fourier transforms can be reduced to actually only one Fourier transform, the Fourier transform in the distributional sense.


Author(s):  
Jens V. Fischer

In previous studies we used Laurent Schwartz’ theory of distributions to rigorously introduce discretizations and periodizations on tempered distributions. These results are now used in this study to derive a validity statement for four interlinking formulas. They are variants of Poisson’s Summation Formula and connect four commonly defined Fourier transforms to one another, the integral Fourier transform, the Discrete-Time Fourier Transform (DTFT), the Discrete Fourier Transform (DFT) and the Integral Fourier transform for periodic functions—used to analyze Fourier series. We prove that under certain conditions, these four Fourier transforms become particular cases of the Fourier transform in the tempered distributions sense. We first derive four interlinking formulas from four definitions of the Fourier transform pure symbolically. Then, using our previous results, we specify three conditions for the validity of these formulas in the tempered distributions sense.


2020 ◽  
Author(s):  
Chris Anto

For long, the least squares regression line has been a primary method to analyze linearly correlated data. In this paper, the author suggests a method involving the Fourier transform that achieves evreything the regression line achieves-- and more


2020 ◽  
Author(s):  
Chris Anto

For long, the least squares regression line has been a primary method to analyze linearly correlated data. In this paper, the author suggests a method involving the Fourier transform that achieves evreything the regression line achieves-- and more


Sign in / Sign up

Export Citation Format

Share Document