Intelligent Support of Decision Making in Management of Large-Scale Systems Using Case-Based, Rule-Based and Qualitative Reasoning over Ontologies

Author(s):  
Marina Kultsova ◽  
Dmitry Litovkin ◽  
Irina Zhukova ◽  
Alexander Dvoryankin
2019 ◽  
Vol 25 (2) ◽  
pp. 213-235 ◽  
Author(s):  
Soumava Boral ◽  
Sanjay Kumar Chaturvedi ◽  
V.N.A. Naikan

Purpose Usually, the machinery in process plants is exposed to harsh and uncontrolled environmental conditions. Even after taking different types of preventive measures to detect and isolate the faults at the earliest possible opportunity becomes a complex decision-making process that often requires experts’ opinions and judicious decisions. The purpose of this paper is to propose a framework to detect, isolate and to suggest appropriate maintenance tasks for large-scale complex machinery (i.e. gearboxes of steel processing plant) in a simplified and structured manner by utilizing the prior fault histories available with the organization in conjunction with case-based reasoning (CBR) approach. It is also demonstrated that the proposed framework can easily be implemented by using today’s graphical user interface enabled tools such as Microsoft Visual Basic and similar. Design/methodology/approach CBR, an amalgamated domain of artificial intelligence and human cognitive process, has been applied to carry out the task of fault detection and isolation (FDI). Findings The equipment failure history and actions taken along with the pertinent health indicators are sufficient to detect and isolate the existing fault(s) and to suggest proper maintenance actions to minimize associated losses. The complex decision-making process of maintaining such equipment can exploit the principle of CBR and overcome the limitations of the techniques such as artificial neural networks and expert systems. The proposed CBR-based framework is able to provide inference with minimum or even with some missing information to take appropriate actions. This proposed framework would alleviate from the frequent requirement of expert’s interventions and in-depth knowledge of various analysis techniques expected to be known to process engineers. Originality/value The CBR approach has demonstrated its usefulness in many areas of practical applications. The authors perceive its application potentiality to FDI with suggested maintenance actions to alleviate an end-user from the frequent requirement of an expert for diagnosis or inference. The proposed framework can serve as a useful tool/aid to the process engineers to detect and isolate the fault of large-scale complex machinery with suggested actions in a simplified way.


2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Arnan Dwika Diasmara ◽  
Aditya Wikan Mahastama ◽  
Antonius Rachmat Chrismanto

Abstract. Intelligent System of the Battle of Honor Board Game with Decision Making and Machine Learning. The Battle of Honor is a board game where 2 players face each other to bring down their opponent's flag. This game requires a third party to act as the referee because the players cannot see each other's pawns during the game. The solution to this is to implement Rule-Based Systems (RBS) on a system developed with Unity to support the referee's role in making decisions based on the rules of the game. Researchers also develop Artificial Intelligence (AI) as opposed to applying Case-Based reasoning (CBR). The application of CBR is supported by the nearest neighbor algorithm to find cases that have a high degree of similarity. In the basic test, the results of the CBR test were obtained with the highest formulated accuracy of the 3 examiners, namely 97.101%. In testing the AI scenario as a referee, it is analyzed through colliding pieces and gives the right decision in determining victoryKeywords: The Battle of Honor, CBR, RBS, unity, AIAbstrak. The Battle of Honor merupakan permainan papan dimana 2 pemain saling berhadapan untuk menjatuhkan bendera lawannya. Permainan ini membutuhkan pihak ketiga yang berperan sebagai wasit karena pemain yang saling berhadapan tidak dapat saling melihat bidak lawannya. Solusi dari hal tersebut yaitu mengimplementasikan Rule-Based Systems (RBS) pada sistem yang dikembangkan dengan Unity untuk mendukung peran wasit dalam memberikan keputusan berdasarkan aturan permainan. Peneliti juga mengembangkan Artificial Intelligence (AI) sebagai lawan dengan menerapkan Case-Based reasoning (CBR). Penerapan CBR didukung dengan algoritma nearest neighbour untuk mencari kasus yang memiliki tingkat kemiripan yang tinggi. Pada pengujian dasar didapatkan hasil uji CBR dengan accuracy yang dirumuskan tertinggi dari 3 penguji yaitu 97,101%. Pada pengujian skenario AI sebagai wasit dianalisis lewat bidak yang bertabrakan dan memberikan keputusan yang tepat dalam menentukan kemenangan.Kata Kunci: The Battle of Honor, CBR, RBS, unity, AI


2013 ◽  
Vol 329 ◽  
pp. 278-282
Author(s):  
Rui Hua Xu ◽  
Zheng Zhou Wang ◽  
Ya Dong Yan ◽  
Cai Wen Ma

In large-scale complex system, The establishment of a fast, accurate fault diagnosis system is more difficult because there exist many uncertain elements between the fault cause and the fault sign .A fault diagnosis system is established based on RBF cloud neural network ,the RBR (rule-based reasoning) and the CBR (case-based reasoning).The fault diagnosis system not only has the advantages of self-learning, high accuracy, randomness, fuzziness, etc ,and has the advantages of independently of mathematical model ,rich knowledge representation, mighty problem solving ability, etc. Theoretical analysis and simulation results show that the system is feasible and effective for fast and accurate fault positioning of complex systems.


2002 ◽  
Vol 01 (02) ◽  
pp. 269-292 ◽  
Author(s):  
HUY V. VO ◽  
BONGSUG CHAE ◽  
DAVID L. OLSON

Many societal decisions involve complexity and conflicting objectives. Preferences in such environments can be expected to change as situations evolve. In this paper, we propose a procedure that incorporates Multiple Criteria Decision Making (MCDM) into system dynamics modeling to handle dynamic multiple criteria situations, which we name dynamic MCDM. A case of urban infrastructure is presented to illustrate the procedure. Dynamic MCDM can handle different lags in economic, social, economic and technical effects of large scale systems. Thus, it may help decision makers avoid selecting alternatives apparently effective in the short term, but detrimental in the long term.


Sign in / Sign up

Export Citation Format

Share Document