Context Aware Resource and Service Provisioning Management in Fog Computing Systems

Author(s):  
Saša Pešić ◽  
Milenko Tošić ◽  
Ognjen Iković ◽  
Mirjana Ivanović ◽  
Miloš Radovanović ◽  
...  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Hamed Vahdat Nejad ◽  
Arezoo Tavakolifar ◽  
Chintan Bhatt ◽  
Nooshin Hanafi ◽  
Nahid Gholizadeh ◽  
...  

Author(s):  
Vasilieos Karagiannis ◽  
Pantelis A. Frangoudis ◽  
Schahram Dustdar ◽  
Stefan Schulte

Author(s):  
VanDung Nguyen ◽  
Tran Trong Khanh ◽  
Tri D. T. Nguyen ◽  
Choong Seon Hong ◽  
Eui-Nam Huh

AbstractIn the Internet of Things (IoT) era, the capacity-limited Internet and uncontrollable service delays for various new applications, such as video streaming analysis and augmented reality, are challenges. Cloud computing systems, also known as a solution that offloads energy-consuming computation of IoT applications to a cloud server, cannot meet the delay-sensitive and context-aware service requirements. To address this issue, an edge computing system provides timely and context-aware services by bringing the computations and storage closer to the user. The dynamic flow of requests that can be efficiently processed is a significant challenge for edge and cloud computing systems. To improve the performance of IoT systems, the mobile edge orchestrator (MEO), which is an application placement controller, was designed by integrating end mobile devices with edge and cloud computing systems. In this paper, we propose a flexible computation offloading method in a fuzzy-based MEO for IoT applications in order to improve the efficiency in computational resource management. Considering the network, computation resources, and task requirements, a fuzzy-based MEO allows edge workload orchestration actions to decide whether to offload a mobile user to local edge, neighboring edge, or cloud servers. Additionally, increasing packet sizes will affect the failed-task ratio when the number of mobile devices increases. To reduce failed tasks because of transmission collisions and to improve service times for time-critical tasks, we define a new input crisp value, and a new output decision for a fuzzy-based MEO. Using the EdgeCloudSim simulator, we evaluate our proposal with four benchmark algorithms in augmented reality, healthcare, compute-intensive, and infotainment applications. Simulation results show that our proposal provides better results in terms of WLAN delay, service times, the number of failed tasks, and VM utilization.


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772110017
Author(s):  
Han-Yu Lin

Fog computing is viewed as an extended technique of cloud computing. In Internet of things–based collaborative fog computing systems, a fog node aggregating lots of data from Internet of things devices has to transmit the information to distributed cloud servers that will collaboratively verify it based on some predefined auditing policy. However, compromised fog nodes controlled by an adversary might inject bogus data to cheat or confuse remote servers. It also causes the waste of communication and computation resources. To further control the lifetime of signing capability for fog nodes, an appropriate mechanism is crucial. In this article, the author proposes a time-constrained strong multi-designated verifier signature scheme to meet the above requirement. In particular, a conventional non-delegatable strong multi-designated verifier signature scheme with low computation is first given. Based on its constructions, we show how to transform it into a time-constrained variant. The unforgeability of the proposed schemes is formally proved based on the famous elliptic curve discrete logarithm assumption. The security requirement of strong signer ambiguity for our substantial constructions is also analyzed by utilizing the intractable assumption of decisional Diffie–Hellman. Moreover, some comparisons in terms of the signature size and computational costs for involved entities among related mechanisms are made.


Sign in / Sign up

Export Citation Format

Share Document