A First Introduction to the Finite Element Analysis Program MSC Marc/Mentat

Author(s):  
Andreas Öchsner ◽  
Marco Öchsner
2007 ◽  
Vol 561-565 ◽  
pp. 1995-1998
Author(s):  
Ming He Chen ◽  
J.H. Li ◽  
Lin Gao ◽  
Dun Wen Zuo ◽  
Min Wang

In order to solve the problem existed in the numerical simulation of sheet metal forming for its use the strain-based forming limit diagram as criterion, which has the flaw of dependence on the strain paths, this paper develops the finite element analysis program based on the stress forming limit criterion applicable to the blank plastic forming technique, which follows the stress-strain transformation relationship when the sheet metal is undergoing plastic deformation, chooses Hill’s quadratic normal anisotropic criterion as computational model and selects the commercial finite element code Dynaform as its development environment. Also it be analyzed the finite element numerical simulation results of two deep drawing parts by the developed program module and realizes the prediction of sheet metal forming limit adopting the FLSD as criterion. The stress-based forming limit criterion for the developed program provides a new means to analyze the forming limit for the multistage sheet metal forming.


2011 ◽  
Vol 117-119 ◽  
pp. 43-47
Author(s):  
Shao Jun Fu ◽  
Chuan Cheng Zhu ◽  
Zhen Ke Huang

On the base of studying on mechanism of the deformation and bearing capacity of vibro-replacement stone column foundation thoroughly, the assumptive conditions are presented. The composite 2-dimension numerical model of the stone column is established, this model considers the couple of stress-strain with Biot consolidation and the reinforced efficiently, the finite element analysis program is developed according to this model. The reliability and validity of APOSE is verified by a simple example. The results show that APOSE can be applied to analyze the consolidation and subsiding for vibro-replacement stone column, etc


2003 ◽  
Vol 16 (5) ◽  
pp. 562-565 ◽  
Author(s):  
J Grundmann ◽  
M Lindmayer ◽  
R R ckelein ◽  
W Schmidt

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Mohammad Kurdi

This work describes the development of a structural optimization framework adept at accommodating diverse customer requirements. The purpose is to provide a framework accessible to the optimization research analyst. The framework integrates the method of moving asymptotes into the finite element analysis program (FEAP) by exploiting the direct interface capability in FEAP. Analytic sensitivities are incorporated to provide a robust and efficient optimization search. User macros are developed to interface the design algorithm and analytic sensitivity with the finite element analysis program. To test the optimization tool and sensitivity calculations, three sizing and one topology optimization problems are considered. In addition, flutter analysis of a heated panel is analyzed as an example of coupling to nonstructural discipline. In sizing optimization, the calculated semianalytic sensitivities match analytic and finite difference calculations. Differences between analytic designs and numerical ones are less than 2.0% and are attributed to discrete nature of finite elements. In the topology problem, quadratic elements are found robust at resolving checkerboard patterns.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


Sign in / Sign up

Export Citation Format

Share Document