scholarly journals A Structural Optimization Framework for Multidisciplinary Design

2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Mohammad Kurdi

This work describes the development of a structural optimization framework adept at accommodating diverse customer requirements. The purpose is to provide a framework accessible to the optimization research analyst. The framework integrates the method of moving asymptotes into the finite element analysis program (FEAP) by exploiting the direct interface capability in FEAP. Analytic sensitivities are incorporated to provide a robust and efficient optimization search. User macros are developed to interface the design algorithm and analytic sensitivity with the finite element analysis program. To test the optimization tool and sensitivity calculations, three sizing and one topology optimization problems are considered. In addition, flutter analysis of a heated panel is analyzed as an example of coupling to nonstructural discipline. In sizing optimization, the calculated semianalytic sensitivities match analytic and finite difference calculations. Differences between analytic designs and numerical ones are less than 2.0% and are attributed to discrete nature of finite elements. In the topology problem, quadratic elements are found robust at resolving checkerboard patterns.

2019 ◽  
Vol 894 ◽  
pp. 60-71
Author(s):  
Minh Phung Dang ◽  
Thanh Phong Dao ◽  
Hieu Giang Le ◽  
Ngoc Thoai Tran

A Compliant XY micropositioning stage is purported for situating a material sample in nanoindentation tester process. This paper aims to develop, analyze and optimize a XY compliant micropositioning stage. The working stroke of proposed XY stage is amplified by combining the four-lever and a bridge amplification mechanism. To enhance the performances of the stage, the main geometric parameters are optimized by an integration method of Taguchi method, response surface method (RSM) and genetic algorithm (GA). Firstly, static analysis and dynamic analysis are conducted by the finite element analysis in order to predict initial performances of the XY stage. Secondly, the number of experiments and the data are retrieved by combination of the finite element analysis-integrated Taguchi method. Thirdly, the effects of main design variables on the output response sensitivity are considered. Later on, mathematical model for the amplification ratio was established by the RSM. Finally, based on the mathematical equation, the GA is adopted to define the optimal design variables. The results of numerical validations are in a good agreement with the predicted results. The results depicted that the proposed hybrid approach ensures a high reliability for engineering optimization problems.


2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2013 ◽  
Vol 561 ◽  
pp. 25-29 ◽  
Author(s):  
Ying Yu ◽  
Jia Wang ◽  
Yu Guang Gong ◽  
Bai Yuan Lv

In this paper, Φ120 rubber sheeting extruder is used as an example, It analyses reversely die shape through a given product shape, analyses the distributions of the velocity field and pressure field by POLYFLOW, and carries out the finite element analysis and structural optimization design of head runner.


2007 ◽  
Vol 561-565 ◽  
pp. 1995-1998
Author(s):  
Ming He Chen ◽  
J.H. Li ◽  
Lin Gao ◽  
Dun Wen Zuo ◽  
Min Wang

In order to solve the problem existed in the numerical simulation of sheet metal forming for its use the strain-based forming limit diagram as criterion, which has the flaw of dependence on the strain paths, this paper develops the finite element analysis program based on the stress forming limit criterion applicable to the blank plastic forming technique, which follows the stress-strain transformation relationship when the sheet metal is undergoing plastic deformation, chooses Hill’s quadratic normal anisotropic criterion as computational model and selects the commercial finite element code Dynaform as its development environment. Also it be analyzed the finite element numerical simulation results of two deep drawing parts by the developed program module and realizes the prediction of sheet metal forming limit adopting the FLSD as criterion. The stress-based forming limit criterion for the developed program provides a new means to analyze the forming limit for the multistage sheet metal forming.


2011 ◽  
Vol 117-119 ◽  
pp. 43-47
Author(s):  
Shao Jun Fu ◽  
Chuan Cheng Zhu ◽  
Zhen Ke Huang

On the base of studying on mechanism of the deformation and bearing capacity of vibro-replacement stone column foundation thoroughly, the assumptive conditions are presented. The composite 2-dimension numerical model of the stone column is established, this model considers the couple of stress-strain with Biot consolidation and the reinforced efficiently, the finite element analysis program is developed according to this model. The reliability and validity of APOSE is verified by a simple example. The results show that APOSE can be applied to analyze the consolidation and subsiding for vibro-replacement stone column, etc


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Su ◽  
Jiawei Bai

Traditional structural optimization is mainly based on the assumption that the materials are elastic, which cannot represent real stress fields in structures. In this study, the genetic algorithm, big bang-big crunch algorithm, and hybrid big bang-big crunch algorithm were employed to optimize the design factors of ship lock heads during concrete construction. The optimization goal was to determine the minimum volume of concrete. The factors considered included the hydration heat, the early-stage creep, and the transient deformation under external loads. In the finite element analysis, three types of boundary conditions were considered. The whole construction process was simulated, and the maximum tensile and compressive stresses, the stability, and the overturning of the lock head were examined. Based on the finite element analysis, to reduce the consumption of memory, a set of implicit recursive equations were used to calculate the thermal creep stress. Thirty-four design variables were distinguished for optimization. A case study on the optimization of a ship lock head was used to demonstrate the optimization process. The optimization results showed that the hybrid big bang-big crunch algorithm was more effective, and some conclusions were derived.


Sign in / Sign up

Export Citation Format

Share Document