scholarly journals A Markov Network Based Passage Retrieval Method for Multimodal Question Answering in the Cultural Heritage Domain

Author(s):  
Shurong Sheng ◽  
Aparna Nurani Venkitasubramanian ◽  
Marie-Francine Moens
2020 ◽  
Author(s):  
Lana Alsabbagh ◽  
Oumayma AlDakkak ◽  
Nada Ghneim

Abstract In this paper, we present our approach to improve the performance of open-domain Arabic Question Answering systems. We focus on the passage retrieval phase which aims to retrieve the most related passages to the correct answer. To extract passages that are related to the question, the system passes through three phases: Question Analysis, Document Retrieval and Passage Retrieval. We define the passage as the sentence that ends with a dot ".". In the Question Processing phase, we applied the traditional NLP steps of tokenization, stopwords and unrelated symbols removal, and replacing the question words with their stems. We also applied Query Expansion by adding synonyms to the question words. In the Document Retrieval phase, we used the Vector Space Model (VSM) with TF-IDF vectorizer and cosine similarity. For the Passage Retrieval phase, which is the core of our system, we measured the similarity between passages and the question by a combination of the BM25 ranker and Word Embedding approach. We tested our system on ACRD dataset, which contains 1395 questions in different domains, and the system was able to achieve correct results with a precision of 92.2% and recall of 79.9% in finding the top-3 related passages for the query.


Author(s):  
José Manuel Gómez Soriano ◽  
Manuel Montes y Gómez ◽  
Emilio Sanchis Arnal ◽  
Paolo Rosso

2022 ◽  
Vol 15 (1) ◽  
pp. 1-13
Author(s):  
David Otero ◽  
Patricia Martin-Rodilla ◽  
Javier Parapar

Social networks constitute a valuable source for documenting heritage constitution processes or obtaining a real-time snapshot of a cultural heritage research topic. Many heritage researchers use social networks as a social thermometer to study these processes, creating, for this purpose, collections that constitute born-digital archives potentially reusable, searchable, and of interest to other researchers or citizens. However, retrieval and archiving techniques used in social networks within heritage studies are still semi-manual, being a time-consuming task and hindering the reproducibility, evaluation, and open-up of the collections created. By combining Information Retrieval strategies with emerging archival techniques, some of these weaknesses can be left behind. Specifically, pooling is a well-known Information Retrieval method to extract a sample of documents from an entire document set (posts in case of social network’s information), obtaining the most complete and unbiased set of relevant documents on a given topic. Using this approach, researchers could create a reference collection while avoiding annotating the entire corpus of documents or posts retrieved. This is especially useful in social media due to the large number of topics treated by the same user or in the same thread or post. We present a platform for applying pooling strategies combined with expert judgment to create cultural heritage reference collections from social networks in a customisable, reproducible, documented, and shareable way. The platform is validated by building a reference collection from a social network about the recent attacks on patrimonial entities motivated by anti-racist protests. This reference collection and the results obtained from its preliminary study are available for use. This real application has allowed us to validate the platform and the pooling strategies for creating reference collections in heritage studies from social networks.


Author(s):  
Carlos G. Figuerola ◽  
Angel F. Zazo ◽  
José L. Alonso Berrocal ◽  
Emilio Rodríguez Vázquez de Aldana

Sign in / Sign up

Export Citation Format

Share Document