Systems Thinking and Complexity Science and the Relevance of Big Data Analytics, Intelligence Functions, and Simulation Models

Author(s):  
Simon Elias Bibri
2021 ◽  
Author(s):  
Ashish Naidu ◽  
Archak Mittal ◽  
Rebecca Kreucher ◽  
Alice Chen Zhang ◽  
Walter Ortmann ◽  
...  

2022 ◽  
pp. 1745-1764
Author(s):  
Kenneth David Strang ◽  
Zhaohao Sun

This chapter discusses several fundamental and managerial controversies associated with artificial intelligence and big data analytics which will be of interest to quantitative professionals and practitioners in the fields of computing, e-commerce, e-business services, and e-government. The authors utilized the systems thinking technique within an action research framework. They used this approach because their ideology was pragmatic, the problem at hand, was complex and institutional (healthcare discipline), and they needed to understand the problems from both a practitioner and a nonhuman technology process viewpoint. They used the literature review along with practitioner interviews collected at a big data conference. Although they found many problems, they considered these to be already encompassed into the big data five V's (volume, velocity, variety, value, veracity). Interestingly, they uncovered three new insights about the hidden healthcare artificial intelligence and big data analytics risks; then they proposed solutions for each of these problems.


Author(s):  
Kenneth David Strang ◽  
Zhaohao Sun

This chapter discusses several fundamental and managerial controversies associated with artificial intelligence and big data analytics which will be of interest to quantitative professionals and practitioners in the fields of computing, e-commerce, e-business services, and e-government. The authors utilized the systems thinking technique within an action research framework. They used this approach because their ideology was pragmatic, the problem at hand, was complex and institutional (healthcare discipline), and they needed to understand the problems from both a practitioner and a nonhuman technology process viewpoint. They used the literature review along with practitioner interviews collected at a big data conference. Although they found many problems, they considered these to be already encompassed into the big data five V's (volume, velocity, variety, value, veracity). Interestingly, they uncovered three new insights about the hidden healthcare artificial intelligence and big data analytics risks; then they proposed solutions for each of these problems.


2019 ◽  
Vol 54 (5) ◽  
pp. 20
Author(s):  
Dheeraj Kumar Pradhan

2020 ◽  
Vol 49 (5) ◽  
pp. 11-17
Author(s):  
Thomas Wrona ◽  
Pauline Reinecke

Big Data & Analytics (BDA) ist zu einer kaum hinterfragten Institution für Effizienz und Wettbewerbsvorteil von Unternehmen geworden. Zu viele prominente Beispiele, wie der Erfolg von Google oder Amazon, scheinen die Bedeutung zu bestätigen, die Daten und Algorithmen zur Erlangung von langfristigen Wettbewerbsvorteilen zukommt. Sowohl die Praxis als auch die Wissenschaft scheinen geradezu euphorisch auf den „Datenzug“ aufzuspringen. Wenn Risiken thematisiert werden, dann handelt es sich meist um ethische Fragen. Dabei wird häufig übersehen, dass die diskutierten Vorteile sich primär aus einer operativen Effizienzperspektive ergeben. Strategische Wirkungen werden allenfalls in Bezug auf Geschäftsmodellinnovationen diskutiert, deren tatsächlicher Innovationsgrad noch zu beurteilen ist. Im Folgenden soll gezeigt werden, dass durch BDA zwar Wettbewerbsvorteile erzeugt werden können, dass aber hiermit auch große strategische Risiken verbunden sind, die derzeit kaum beachtet werden.


2019 ◽  
Vol 7 (2) ◽  
pp. 273-277
Author(s):  
Ajay Kumar Bharti ◽  
Neha Verma ◽  
Deepak Kumar Verma

2017 ◽  
Vol 49 (004) ◽  
pp. 825--830
Author(s):  
A. AHMED ◽  
R.U. AMIN ◽  
M. R. ANJUM ◽  
I. ULLAH ◽  
I. S. BAJWA

2016 ◽  
Author(s):  
Janet Chan ◽  
Lyria Bennett Moses

Sign in / Sign up

Export Citation Format

Share Document