Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis

Author(s):  
Anja Lührmann ◽  
Hayley J. Newton ◽  
Matteo Bonazzi
2015 ◽  
Vol 83 (3) ◽  
pp. 1190-1198 ◽  
Author(s):  
Joseph G. Graham ◽  
Caylin G. Winchell ◽  
Uma M. Sharma ◽  
Daniel E. Voth

Coxiella burnetiicauses human Q fever, a zoonotic disease that presents with acute flu-like symptoms and can result in chronic life-threatening endocarditis. In human alveolar macrophages,C. burnetiiuses a Dot/Icm type IV secretion system (T4SS) to generate a phagolysosome-like parasitophorous vacuole (PV) in which to replicate. The T4SS translocates effector proteins, or substrates, into the host cytosol, where they mediate critical cellular events, including interaction with autophagosomes, PV formation, and prevention of apoptosis. Over 100C. burnetiiDot/Icm substrates have been identified, but the function of most remains undefined. Here, we identified a novel Dot/Icm substrate-encoding open reading frame (CbuD1884) present in allC. burnetiiisolates except the Nine Mile reference isolate, where the gene is disrupted by a frameshift mutation, resulting in a pseudogene. The CbuD1884 protein contains two transmembrane helices (TMHs) and a coiled-coil domain predicted to mediate protein-protein interactions. The C-terminal region of the protein contains a predicted Dot/Icm translocation signal and was secreted by the T4SS, while the N-terminal portion of the protein was not secreted. When ectopically expressed in eukaryotic cells, the TMH-containing N-terminal region of the CbuD1884 protein trafficked to the endoplasmic reticulum (ER), with the C terminus dispersed nonspecifically in the host cytoplasm. This new Dot/Icm substrate is now termed ElpA (ER-localizingproteinA). Full-length ElpA triggered substantial disruption of ER structure and host cell secretory transport. These results suggest that ElpA is a pathotype-specific T4SS effector that influences ER function duringC. burnetiiinfection.


2013 ◽  
Vol 190 (7) ◽  
pp. 3629-3638 ◽  
Author(s):  
Marco Tulio R. Gomes ◽  
Priscila C. Campos ◽  
Fernanda S. Oliveira ◽  
Patricia P. Corsetti ◽  
Karina R. Bortoluci ◽  
...  

2002 ◽  
Vol 70 (3) ◽  
pp. 1657-1663 ◽  
Author(s):  
Steven D. Zink ◽  
Lisa Pedersen ◽  
Nicholas P. Cianciotto ◽  
Yousef Abu Kwaik

ABSTRACT We have previously shown that Legionella pneumophila induces caspase 3-dependent apoptosis in mammalian cells during early stages of infection. In this report, we show that nine L. pneumophila strains with mutations in the dotA, dotDCB, icmT, icmGCD, and icmJB loci are completely defective in the induction of apoptosis, in addition to their severe defects in intracellular replication and pore formation-mediated cytotoxicity. Importantly, all nine dot/icm mutants were complemented for all their defective phenotypes with the respective wild-type loci. We show that the role of the Dot/Icm type IV secretion system in the induction of apoptosis is independent of the RtxA toxin, the dot/icm-regulated pore-forming toxin, and the type II secretion system. However, the pore-forming toxin, which is triggered upon entry into the postexponential growth phase, enhances the ability of L. pneumophila to induce apoptosis. Our data provide the first example of the role of a type IV secretion system of a bacterial pathogen in the induction of apoptosis in the host cell.


Author(s):  
Saugata Mahapatra ◽  
Brandi Gallaher ◽  
Sydni Caet Smith ◽  
Joseph G. Graham ◽  
Daniel E. Voth ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Heung Kit Leslie Chung ◽  
Alfred Tay ◽  
Sophie Octavia ◽  
Jieqiong Chen ◽  
Fang Liu ◽  
...  

Abstract Campylobacter concisus is an oral bacterium that is associated with inflammatory bowel disease. C. concisus has two major genomospecies, which appear to have different enteric pathogenic potential. Currently, no studies have compared the genomes of C. concisus strains from different genomospecies. In this study, a comparative genome analysis of 36 C. concisus strains was conducted including 27 C. concisus strains sequenced in this study and nine publically available C. concisus genomes. The C. concisus core-genome was defined and genomospecies-specific genes were identified. The C. concisus core-genome, housekeeping genes and 23S rRNA gene consistently divided the 36 strains into two genomospecies. Two novel genomic islands, CON_PiiA and CON_PiiB, were identified. CON_PiiA and CON_PiiB islands contained proteins homologous to the type IV secretion system, LepB-like and CagA-like effector proteins. CON_PiiA islands were found in 37.5% of enteric C. concisus strains (3/8) isolated from patients with enteric diseases and none of the oral strains (0/27), which was statistically significant. This study reports the findings of C. concisus genomospecies-specific genes, novel genomic islands that contain type IV secretion system and putative effector proteins, and other new genomic features. These data provide novel insights into understanding of the pathogenicity of this emerging opportunistic pathogen.


2004 ◽  
Vol 54 (2) ◽  
pp. 561-574 ◽  
Author(s):  
Andree Hubber ◽  
Annette C. Vergunst ◽  
John T. Sullivan ◽  
Paul J. J. Hooykaas ◽  
Clive W. Ronson

2007 ◽  
Vol 63 (5) ◽  
pp. 1508-1523 ◽  
Author(s):  
Tal Zusman ◽  
Gali Aloni ◽  
Einat Halperin ◽  
Hani Kotzer ◽  
Elena Degtyar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document