type iv secretion
Recently Published Documents


TOTAL DOCUMENTS

705
(FIVE YEARS 119)

H-INDEX

86
(FIVE YEARS 7)

2022 ◽  
Vol 119 (1) ◽  
pp. e2112529119
Author(s):  
Gabriel U. Oka ◽  
Diorge P. Souza ◽  
William Cenens ◽  
Bruno Y. Matsuyama ◽  
Marcus V. C. Cardoso ◽  
...  

Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD–VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD. Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.


2021 ◽  
Vol 22 (24) ◽  
pp. 13637
Author(s):  
Xue Xiong ◽  
Bowen Li ◽  
Zhixiong Zhou ◽  
Guojing Gu ◽  
Mengjuan Li ◽  
...  

Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Melanie M. Callaghan ◽  
Birgit Koch ◽  
Kathleen T. Hackett ◽  
Amy K. Klimowicz ◽  
Ryan E. Schaub ◽  
...  

Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katja Fromm ◽  
Christoph Dehio

Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Qianhua Wu ◽  
Bozhen Wang ◽  
Xi Shen ◽  
Danyu Shen ◽  
Bingxin Wang ◽  
...  

AbstractPlant growth-promoting rhizobacteria (PGPR) contain various biocontrol bacteria with broad-spectrum antimicrobial activity, and their single species has been extensively applied to control crop diseases. The development of complex biocontrol community by mixing two or more PGPR members together is a promising strategy to enlarge the efficacy and scope of biocontrol. However, an effective method to assess the natural compatibility of PGPR members has not yet been established to date. Here, we developed such a tool by using the bacterial contact-dependent antibacterial activity (CDAA) as a probe. We showed that the CDAA events are common in two-species interactions in the four selected representative PGPRs, represented by the incompatible interaction of Lysobacter enzymogenes strain OH11 (OH11) and Lysobacter antibioticus strain OH13 (OH13). We further showed that the CDAA between OH11 and OH13 is jointly controlled by a contact-dependent killing device, called the type IV secretion system (T4SS). By deleting the respective T4SS synthesis genes, the T4SS in both strains was co-inactivated and this step unlocked  their natural CDAA, resulting in an engineered, compatible mutant alliance that co-displayed antibacterial and antifungal activity. Therefore, this study reveals that releasing bacterial CDAA is effective to rationally engineer the biocontrol community.


Author(s):  
XiaoYu Deng ◽  
Jinke He ◽  
Yueli Wang ◽  
Qin Yang ◽  
Ji Hai Yi ◽  
...  

Brucella abortus is a Gram-negative intracellular parasite bacteria causing serious health hazards in humans and animals. The type IV secretion system (T4SS), encoded by the virB promoter, has been identified as an important virulence factor for Brucella abortus, but the impact on Brucella abortus A19 remains unclear. In this study, the T4SS of Brucella abortus A19 was inactivated by deleting the virB promoter, resulting in a mutant strain A19ΔvirB. Real-time PCR and Western-blotting analysis demonstrated that T4SS-related proteins were not expressed after virB promoter deletion. Moreover, the survival rate of A19 in high salt and strong acidic environments was decreased after virB promoter deletion. Compared to the parental strain A19, the A19ΔvirB mutant strain showed reduced growth rate in TSB, decreased invasion ability to macrophages and dendritic cells, and reduced virulence of the mutant strain in macrophages, dendritic cells and mice. In addition, the A19ΔvirB mutant strain showed enhanced autophagy on macrophages and dendritic cells compared with A19, and the A19ΔvirB mutant strain was able to upregulate IL-6 and downregulate IL-10 in macrophages. These data help us to better understand the T4SS of the A19 vaccine strain and contribute to our efforts to improve Brucella vaccines.


mBio ◽  
2021 ◽  
Author(s):  
Pratick Khara ◽  
Liqiang Song ◽  
Peter J. Christie ◽  
Bo Hu

Bacterial type IV secretion systems (T4SSs) play central roles in antibiotic resistance spread and virulence. By cryo-electron tomography (CryoET), we solved the structure of the plasmid pKM101-encoded T4SS in the native context of the bacterial cell envelope.


2021 ◽  
Author(s):  
Melanie M. Callaghan ◽  
Amy K. Klimowicz ◽  
Abigail C. Shockey ◽  
John Kane ◽  
Caitlin S. Pepperell ◽  
...  

The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD , the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels, but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. These data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.


2021 ◽  
Author(s):  
Luying Liu ◽  
Craig R. Roy

Legionella pneumophila is the causative agent of Legionnaires’ Disease and is capable replicating inside phagocytic cells such as mammalian macrophages. The Dot/Icm type IV secretion system is a L. pneumophila virulence factor that is essential for successful intracellular replication. During infection, L. pneumophila builds a replication permissive vacuole by recruiting multiple host molecules and hijacking host cellular signaling pathways, a process mediated by the coordinated functions of multiple Dot/Icm effector proteins. RavY is a predicted Dot/Icm effector protein found to be important for optimal L. pneumophila replication inside host cells. Here, we demonstrate that RavY is a Dot/Icm-translocated effector protein that is dispensable for axenic replication of L. pneumophila , but critical for optimal intracellular replication of the bacteria. RavY is not required for avoidance of endosomal maturation, nor does RavY contribute to the recruitment of host molecules found on replication-permissive vacuoles, such as ubiquitin, RAB1a, and RTN4. Vacuoles containing L. pneumophila ravY mutants promote intracellular survival but limit replication. The replication defect of the L. pneumophila ravY mutant was complemented when the mutant was in the same vacuole as wild type L. pneumophila . Thus, RavY is an effector that is essential for promoting intracellular replication of L. pneumophila once the specialized vacuole has been established.


Sign in / Sign up

Export Citation Format

Share Document