Azimuth Angle Estimation of Ultrasonic Signal Arrival by Using Multi-pair Receiver System

Author(s):  
Bogdan Kreczmer
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Guang Pu Zhang ◽  
Ce Zheng ◽  
Wang Sheng Lin

Azimuth angle estimation using a single vector hydrophone is a well-known problem in underwater acoustics. In the presence of multiple sources, a conventional complex acoustic intensity estimator (CAIE) cannot distinguish the azimuth angle of each source. In this paper, we propose a steering acoustic intensity estimator (SAIE) for azimuth angle estimation in the presence of interference. The azimuth angle of the interference is known in advance from the global positioning system (GPS) and compass data. By constructing the steering acoustic energy fluxes in the x and y channels of the acoustic vector hydrophone, the azimuth angle of interest can be obtained when the steering azimuth angle is directed toward the interference. Simulation results show that the SAIE outperforms the CAIE and is insensitive to the signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR). A sea trial is presented that verifies the validity of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Anbang Zhao ◽  
Lin Ma ◽  
Juan Hui ◽  
Caigao Zeng ◽  
Xuejie Bi

Five well-known azimuth angle estimation methods using a single acoustic vector sensor (AVS) are investigated in open-lake experiments. A single AVS can measure both the acoustic pressure and acoustic particle velocity at a signal point in space and output multichannel signals. The azimuth angle of one source can be estimated by using a single AVS in a passive sonar system. Open-lake experiments are carried out to evaluate how these different techniques perform in estimating azimuth angle of a source. The AVS that was applied in these open-lake experiments is a two-dimensional accelerometer structure sensor. It consists of two identical uniaxial velocity sensors in orthogonal orientations, plus a pressure sensor—all in spatial collocation. These experimental results indicate that all these methods can effectively realize the azimuth angle estimation using only one AVS. The results presented in this paper reveal that AVS can be applied in a wider range of application in distributed underwater acoustic systems for passive detection, localization, classification, and so on.


Sign in / Sign up

Export Citation Format

Share Document