scholarly journals Steering Acoustic Intensity Estimator Using a Single Acoustic Vector Hydrophone

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Guang Pu Zhang ◽  
Ce Zheng ◽  
Wang Sheng Lin

Azimuth angle estimation using a single vector hydrophone is a well-known problem in underwater acoustics. In the presence of multiple sources, a conventional complex acoustic intensity estimator (CAIE) cannot distinguish the azimuth angle of each source. In this paper, we propose a steering acoustic intensity estimator (SAIE) for azimuth angle estimation in the presence of interference. The azimuth angle of the interference is known in advance from the global positioning system (GPS) and compass data. By constructing the steering acoustic energy fluxes in the x and y channels of the acoustic vector hydrophone, the azimuth angle of interest can be obtained when the steering azimuth angle is directed toward the interference. Simulation results show that the SAIE outperforms the CAIE and is insensitive to the signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR). A sea trial is presented that verifies the validity of the proposed method.

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 168
Author(s):  
Xiaoyong Zhang ◽  
Guojun Zhang ◽  
Zhenzhen Shang ◽  
Shan Zhu ◽  
Peng Chen ◽  
...  

The principle of acoustic energy flux detection method using a single micro electromechanical system (MEMS) vector hydrophone is analyzed in this paper. The probability distribution of acoustic energy flux and the weighted histogram algorithm are discussed. Then, an improved algorithm is proposed. Based on the algorithm, the distribution range of the energy is obtained by a sliding window, the energy center of gravity in the range is considered as the result of direction of arrival (DOA) estimation, and it is proved to be the maximum likelihood estimation of the target direction. The simulation results show that, with the signal to noise ratio (SNR) from −10 dB to 10 dB, the root mean square error (RMSE) of the improved algorithm is reduced by 47.8% on average, and is more accurate in the presence of interference. The experimental results of lake test are consistent with the theory analysis and simulation results.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5619 ◽  
Author(s):  
Yan Liang ◽  
Zhou Meng ◽  
Yu Chen ◽  
Yichi Zhang ◽  
Mingyang Wang ◽  
...  

In this paper, we propose a data fusion algorithm based on the weighted histogram statistics (DF-WHS) to improve the performance of direction-of-arrival (DOA) estimation for the vector hydrophone vertical array (VHVA). The processing frequency band is firstly divided into multiple sub-bands, and the high-resolution multiple signal classification (MUSIC) algorithm is applied to estimate the azimuth of each sub-band for each vector hydrophone. Then, the weighted least square (WLS) data fusion technique is used to fuse the sub-band estimation results of multiple sensors. Finally, the weighted histogram statistics method is employed to obtain the synthesis results in the frequency domain. We carried out a simulation and sea trial of the 16-element VHVA to evaluate the performance of the proposed algorithm. Compared to several traditional processing algorithms, the beam width of the proposed approach is significantly narrower, the side lobes are considerably lower, and the mean square error (MSE) is effectively smaller. In addition, the DF-WHS method is more suitable to accurately estimate the target azimuth with a low signal-to-noise ratio (SNR) because the noise sub-band is suppressed in the weighted histogram statistics step. The DF-WHS method in this article provides a new approach to improve the performance of deep-sea target detection for the VHVA.


Author(s):  
Ahmed H. Dweib

Energy-based finite element model is utilized for the evaluation of the Statistical Energy Analysis (SEA) coupling factor and the dependence of the coupling factor on the different system parameters is studied. Previous research has shown that the coupling factor is largely dependent on the modal densities of the fluid and pipe subsystems, which depend on the pipe dimensional parameters. The coupling factor depends also on the spectrum of the acoustic power generated, which in turn depends on the mass flow rate, the pressure reduction ratio and the characteristics of the pressure-reducing device. This study is concerned with the piping system parameters, downstream of the pressure-reducing valve. The system parameters selected for consideration are the pipe diameter to thickness ratio D/T and the pipe length to diameter ratio L/D. The study presents the effect of the variation in these two dimensionless parameters on the coupling factor. The results of the analysis can be used directly in the formulation of SEA power flow equations for large piping systems with multiple sources of acoustic energy as part of the fatigue life evaluation in critical services.


2020 ◽  
Vol 73 (4) ◽  
pp. 892-911 ◽  
Author(s):  
M. Nezhadshahbodaghi ◽  
M. R. Mosavi ◽  
N. Rahemi

The presence of code Doppler and navigation bit sign transitions means that the acquisition of global positioning system (GPS) signals is difficult in weak signal environments where the output signal-to-noise ratio (SNR) is significantly reduced. Post-correlation techniques are typically utilised to solve these problems. Despite the advantages of these techniques, the post-correlation techniques suffer from problems caused by the code Doppler and the navigation bit sign transitions. We present an improved semi-bit differential acquisition method which can improve the code Doppler and the bit sign transition issues in the post-correlation techniques. In order to overcome the phenomenon of navigation bit sign transitions, the proposed method utilises the properties of the navigation bit. Since each navigation bit takes as long as 20 ms, there would be 10 ms correlations duration integration time between the received signal and the local coarse/acquisition (C/A) code in which the navigation bit sign transitions will not occur. Consequently, this problem can be cancelled by performing 10 ms correlations in even and odd units separately. Compensation of the code Doppler is also accomplished by shifting the code phase of the correlation results. To validate the performance of our suggested method, simulations are performed based on three data sets. The results show that the quantity of required input SNR to detect at least four satellites in the proposed method is − 48·3 dB, compared with − 20 dB and − 9 dB, respectively, in traditional differential and non-coherent methods.


Author(s):  
Aimin Wang ◽  
Nickolas Vlahopoulos ◽  
Jason Zhu ◽  
Mike Qian

An Energy Boundary Element Analysis (EBEA) formulation is presented for calculating sound radiation from a source with arbitrary shape at high frequency. The basic integral equation for the EBEA is derived including a half-space boundary condition. The time and frequency averaged acoustic energy density and acoustic intensity constitutes the primary variables of the new formulation, and the corresponding Green’s functions are derived. The governing equations for the EBEA are established and the numerical formulae for the coefficients of the system matrix, the acoustic energy density, and the acoustic intensity are derived using a Gaussian quadrature. The EBEA formulation and the corresponding numerical implementation are validated by comparing EBEA results to test data for the acoustic field around a vehicle that originates from an airborne noise source. Good correlation is demonstrated between numerical predictions and test data.


2013 ◽  
Vol 423-426 ◽  
pp. 2496-2506
Author(s):  
Bo Le Ma ◽  
Jing Fang Cheng ◽  
Wei Zhang

As a useful tool for line spectrum detection in underwater signal ,ALE has been used wildly. But there are still some problems to influence the effect of ALE. This paper gives three problems on ALE and analyses these.Then by the characteristics of vector hydrophone and a improved variable step size LMS,this paper constructs a cascade double input with variable step size based on vector hydrophone line spectrum enhancer . This algorithm restrains the noise of main channel twice ,meanwhile controls the noise in reference channel , so as to improve signal to noise ratio better. At the same time ,because of adopting the improved variable step size LMS, the steady-state error is reduced. From the results of simulation and experiment, the method presented in this paper can have a better effect of line spectrum enhancement.


Geophysics ◽  
2006 ◽  
Vol 71 (4) ◽  
pp. SI177-SI187 ◽  
Author(s):  
Brad Artman

Imaging passive seismic data is the process of synthesizing the wealth of subsurface information available from reflection seismic experiments by recording ambient sound using an array of geophones distributed at the surface. Crosscorrelating the traces of such a passive experiment can synthesize data that are identical to actively collected reflection seismic data. With a correlation-based imaging condition, wave-equation shot-profile depth migration can use raw transmission wavefields as input for producing a subsurface image. Migration is even more important for passively acquired data than for active data because with passive data, the source wavefields are likely to be weak compared with background and instrument noise — a condition that leads to a low signal-to-noise ratio. Fourier analysis of correlating long field records shows that aliasing of the wavefields from distinct shots is unavoidable. Although this reduces the order of computations for correlation by the length of the original trace, the aliasing produces an output volume that may not be substantially more useful than the raw data because of the introduction of crosstalk between multiple sources. Direct migration of raw field data still can produce an accurate image, even when the transmission wavefields from individual sources are not separated. To illustrate direct migration, I use images from a shallow passive seismic investigation targeting a buried hollow pipe and the water-table reflection. These images show a strong anomaly at the 1-m depth of the pipe and faint events that could be the water table at a depth of around [Formula: see text]. The images are not clear enough to be irrefutable. I identify deficiencies in survey design and execution to aid future efforts.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC27-WC36 ◽  
Author(s):  
Oleg V. Poliannikov ◽  
Alison E. Malcolm ◽  
Hugues Djikpesse ◽  
Michael Prange

Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. Traditionally, events are localized individually. Available information about events already localized is not used to help estimate other source locations. Traditional localization methods yield an uncertainty that is inversely proportional to the square root of the number of receivers. However, in applications where multiple fractures are created, multiple sources in a reference fracture may provide redundant information about unknown events in subsequent fractures that can boost the signal-to-noise ratio, improving estimates of the event positions. We used sources in fractures closer to the monitoring well to help localize events further away. It is known through seismic interferometry that with a 2D array of receivers, the traveltime between two sources may be recovered from a crosscorrelogram of two common source gathers. This allowed an event in the second fracture to be localized relative to an event in the reference fracture. A difficulty became evident when receivers are located in a single monitoring well. When the receiver array is 1D, classical interferometry cannot be directly employed because the problem becomes underdetermined. In our approach, interferometry was used to partially redatum microseismic events from the second fracture onto the reference fracture so that they can be used as virtual receivers, providing additional information complementary to that provided by the physical receivers. Our error analysis showed that, in addition to the gain obtained by having multiple physical receivers, the location uncertainty is inversely proportional to the square root of the number of sources in the reference fracture. Because the number of microseism sources is usually high, the proposed method will usually result in more accurate location estimates as compared with the traditional methods.


Sign in / Sign up

Export Citation Format

Share Document