Envisioned Network Architectures for IoT Applications

Author(s):  
P. Sarwesh ◽  
N. Shekar V. Shet ◽  
K. Chandrasekaran
2021 ◽  
Vol 2094 (3) ◽  
pp. 032015
Author(s):  
H Heidari ◽  
A A Velichko

Abstract In the age of neural networks and Internet of Things (IoT), the search for new neural network architectures capable of operating on devices with limited computing power and small memory size is becoming an urgent agenda. Designing suitable algorithms for IoT applications is an important task. The paper proposes a feed forward LogNNet neural network, which uses a semi-linear Henon type discrete chaotic map to classify MNIST-10 dataset. The model is composed of reservoir part and trainable classifier. The aim of the reservoir part is transforming the inputs to maximize the classification accuracy using a special matrix filing method and a time series generated by the chaotic map. The parameters of the chaotic map are optimized using particle swarm optimization with random immigrants. As a result, the proposed LogNNet/Henon classifier has higher accuracy and the same RAM usage, compared to the original version of LogNNet, and offers promising opportunities for implementation in IoT devices. In addition, a direct relation between the value of entropy and accuracy of the classification is demonstrated.


2019 ◽  
Vol 2019 (1) ◽  
pp. 153-158
Author(s):  
Lindsay MacDonald

We investigated how well a multilayer neural network could implement the mapping between two trichromatic color spaces, specifically from camera R,G,B to tristimulus X,Y,Z. For training the network, a set of 800,000 synthetic reflectance spectra was generated. For testing the network, a set of 8,714 real reflectance spectra was collated from instrumental measurements on textiles, paints and natural materials. Various network architectures were tested, with both linear and sigmoidal activations. Results show that over 85% of all test samples had color errors of less than 1.0 ΔE2000 units, much more accurate than could be achieved by regression.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


Author(s):  
Piotr Rajchowski ◽  
Jaroslaw Sadowski ◽  
Olga Blaszkiewicz ◽  
Krzysztof K. Cwalina ◽  
Alicja Olejniczak

GIS Business ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. 728-750
Author(s):  
Naeem Z Azeemi ◽  
Saira Khan ◽  
Sharmini Enoch ◽  
Riktesh Srivastava ◽  
Omar al Basheer ◽  
...  

The superstructure network in the Internet of Things (IoT) is an emerging network targeted to enable an ecosystem of smart applications and services. It connectsphysical resources and peopletogether with software, hence contribute to sustainable growth, provided it combines and guarantees trustand security for people and businesses.  In this work we presented smart city viewpoint opt-in to the Firth Generation (5G) mobile networks. Both a framework and deployment are explored rigorously to assist and predicting robustness of IoT technologies and applications as a natural outcome of the Third Generation Partnership Project (3GPP) in general and LTE in particular. These technologies are compared on the basis of Air Interfaces and their Specifications i.e. Adaptive Modulation and Coding, Multiple Access Schemes and Multiple Antenna Techniques along with the evolution and comparison of the Network Architectures.


Author(s):  
A KHAN ◽  
G AHMED ◽  
F ALI ◽  
S ULLAH ◽  
L GUL
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document