Path Loss Analysis for the IoT Applications in the Urban and Indoor Environments

Author(s):  
Piotr Rajchowski ◽  
Jaroslaw Sadowski ◽  
Olga Blaszkiewicz ◽  
Krzysztof K. Cwalina ◽  
Alicja Olejniczak
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1653
Author(s):  
Ahmed Al-Saman ◽  
Michael Cheffena ◽  
Olakunle Elijah ◽  
Yousef A. Al-Gumaei ◽  
Sharul Kamal Abdul Rahim ◽  
...  

The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6869
Author(s):  
Zahra Nazari Chaleshtori ◽  
Zabih Ghassemlooy ◽  
Hossien B. Eldeeb ◽  
Murat Uysal ◽  
Stanislav Zvanovec

Organic light emitting diodes (OLEDs) have recently received growing interest for their merits as soft light and large panels at a low cost for the use in public places such as airports, shopping centers, offices, and train or bus stations. Moreover, the flexible substrate-based OLEDs provide an attractive feature of having curved or rolled lighting sources for the use in wearable devices and display panels. This technology can be implemented in visible light communications (VLC) for several applications such as visual display, data communications, and indoor localization. This article aims to investigate the use of flexible OLED-based VLC in indoor environments (i.e., office, corridor and semi-open corridor in shopping malls). We derive a two-term power series model to be match with the root-mean-square delay spread and optical path loss (OPL). We show that, for OLED positioned on outer-wall of shops, the channel gain is enhanced in contrast to them being positioned on the inner-wall. Moreover, the channel gain in empty environments is higher compare with the furnished rooms. We show that, the OPL for a 10 m link span are lower by 4.4 and 6.1 dB for the empty and semi-open corridors compared with the furnished rooms, when OLED is positioned on outer-wall of shops. Moreover, the channel gain in the corridor is higher compared with the semi-open corridor. We also show that, in furnished and semi-open corridors the OPL values are 55.6 and 57.2 dB at the center of corridor increasing to 87.6 and 90.7 dB at 20 m, respectively, when OLED is positioned on outer-wall of shops.


2013 ◽  
Vol 55 (10) ◽  
pp. 2401-2405 ◽  
Author(s):  
Dimitris Mouhtaropoulos ◽  
Achilles Boursianis ◽  
Theodoros Samaras

2019 ◽  
Author(s):  
Ualison Dias ◽  
Eduardo Aguiar ◽  
Michel Hell ◽  
Alvaro Medeiros ◽  
Daniel Silveira

Atualmente, grande parte dos sensores utilizados em Internet das Coisas adota tecnologia sem fio, a fim de facilitar a construção de redes de sensoriamento. Neste sentido, a classificação do tipo de ambiente no qual estes sensores estão localizados exerce um importante papel no desempenho de tais redes de sensoriamento, uma vez que pode ser utilizada na determinação de níveis mais eficientes de consumo de energia dos sensores que as compõe. Assim, neste trabalho é apresentada uma abordagem baseada em Classificadores Fuzzy Auto-organizáveis para a classificação de ambientes internos a partir de medições em tempo real do sinal de radiofrequência de uma rede de sensoriamento sem fio em um ambiente real. Os resultados experimentais apresentados mostram que a abordagem proposta obteve alto desempenho com baixo custo computacional na solução do problema apresentado.


Sign in / Sign up

Export Citation Format

Share Document