scholarly journals A Gauge-Invariant Reversible Cellular Automaton

Author(s):  
Pablo Arrighi ◽  
Giuseppe Di Molfetta ◽  
Nathanaël Eon
2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Marko Medenjak ◽  
Vladislav Popkov ◽  
Tomaz Prosen ◽  
Eric Ragoucy ◽  
Matthieu Vanicat

In this paper we study the statistical properties of a reversible cellular automaton in two out-of-equilibrium settings. In the first part we consider two instances of the initial value problem, corresponding to the inhomogeneous quench and the local quench. Our main result is an exact matrix product expression of the time evolution of the probability distribution, which we use to determine the time evolution of the density profiles analytically. In the second part we study the model on a finite lattice coupled with stochastic boundaries. Once again we derive an exact matrix product expression of the stationary distribution, as well as the particle current and density profiles in the stationary state. The exact expressions reveal the existence of different phases with either ballistic or diffusive transport depending on the boundary parameters.


2001 ◽  
Vol DMTCS Proceedings vol. AA,... (Proceedings) ◽  
Author(s):  
Jérôme Durand-Lose

International audience Cellular automata are mappings over infinite lattices such that each cell is updated according tothe states around it and a unique local function.Block permutations are mappings that generalize a given permutation of blocks (finite arrays of fixed size) to a given partition of the lattice in blocks.We prove that any d-dimensional reversible cellular automaton can be exp ressed as thecomposition of d+1 block permutations.We built a simulation in linear time of reversible cellular automata by reversible block cellular automata (also known as partitioning CA and CA with the Margolus neighborhood) which is valid for both finite and infinite configurations. This proves a 1990 conjecture by Toffoli and Margolus <i>(Physica D 45)</i> improved by Kari in 1996 <i>(Mathematical System Theory 29)</i>.


2021 ◽  
pp. 1-29
Author(s):  
JOHAN KOPRA

Abstract For any infinite transitive sofic shift X we construct a reversible cellular automaton (that is, an automorphism of the shift X) which breaks any given finite point of the subshift into a finite collection of gliders traveling into opposing directions. This shows in addition that every infinite transitive sofic shift has a reversible cellular automaton which is sensitive with respect to all directions. As another application we prove a finitary version of Ryan’s theorem: the automorphism group $\operatorname {\mathrm {Aut}}(X)$ contains a two-element subset whose centralizer consists only of shift maps. We also show that in the class of S-gap shifts these results do not extend beyond the sofic case.


2021 ◽  
Author(s):  
Kevissen Sellapillay ◽  
Pablo Arrighi ◽  
Giuseppe Di Molfetta

Abstract We build a quantum cellular automaton (QCA) which coincides with 1 + 1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge field on the links. The particles are massive fermions, and the evolution is exactly U(1) gauge-invariant. We show that, in the continuous-time discrete-space limit, the QCA converges to the Kogut-Susskind staggered version of 1 + 1 QED. We also show that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac equation—a strong indication that the model remains accurate in the relativistic regime.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Katja Klobas ◽  
Tomaz Prosen

In this paper we study the space evolution in the Rule 54 reversible cellular automaton, which is a paradigmatic example of a deterministic interacting lattice gas. We show that the spatial translation of time configurations of the automaton is given in terms of local deterministic maps with the support that is small but bigger than that of the time evolution. The model is thus an example of space-time dual reversible cellular automaton, i.e. its dual is also (in general different) reversible cellular automaton. We provide two equivalent interpretations of the result; the first one relies on the dynamics of quasi-particles and follows from an exhaustive check of all the relevant time configurations, while the second one relies on purely algebraic considerations based on the circuit representation of the dynamics. Additionally, we use the properties of the local space evolution maps to provide an alternative derivation of the matrix product representation of multi-time correlation functions of local observables positioned at the same spatial coordinate.


Sign in / Sign up

Export Citation Format

Share Document