relativistic spacetime
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kevissen Sellapillay ◽  
Pablo Arrighi ◽  
Giuseppe Di Molfetta

Abstract We build a quantum cellular automaton (QCA) which coincides with 1 + 1 QED on its known continuum limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional lattice, and having them interact with the gauge field on the links. The particles are massive fermions, and the evolution is exactly U(1) gauge-invariant. We show that, in the continuous-time discrete-space limit, the QCA converges to the Kogut-Susskind staggered version of 1 + 1 QED. We also show that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac equation—a strong indication that the model remains accurate in the relativistic regime.


Author(s):  
Venkatraman Gopalan

Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2D. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other's clocks as their own, while retaining their original space coordinates, the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞/ m ) m which is that of a cylinder in 3D, and that of a hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica script is provided for plotting the MS and RBS geometries discussed in the work.


Author(s):  
John Skilling ◽  
Kevin Knuth

The theories of quantum mechanics and relativity dramatically altered our understanding of the universe ushering in the era of modern physics. Quantum theory deals with objects probabilistically at small scales, whereas relativity deals classically with motion in space and time. We show here that the mathematical structures of quantum theory and of relativity follow together from pure thought, defined and uniquely constrained by the same elementary ``combining and sequencing'' symmetries that underlie standard arithmetic and probability. The key is uncertainty, which inevitably accompanies observation of quantity and imposes the use of pairs of numbers. The symmetries then lead directly to the use of complex \sqrt{-1} arithmetic, the standard calculus of quantum mechanics, and the Lorentz transformations of relativistic spacetime. One dimension of time and three dimensions of space are thus derived as the profound and inevitable framework of physics.


2020 ◽  
Vol 50 (11) ◽  
pp. 1418-1425
Author(s):  
Neil Dewar ◽  
James Read

AbstractIt is well-known that the conformal structure of a relativistic spacetime is of profound physical and conceptual interest. In this note, we consider the analogous structure for Newtonian theories. We show that the Newtonian Weyl tensor is an invariant of this structure.


Author(s):  
Craig Callender

The physicist Hermann Minkowski famously claimed that relativity implies that space and time are doomed to fade away into mere shadows. It therefore may come as a surprise that relativistic spacetime is often decomposed into “time” and “space” in so-called “3 + 1” formulations of relativity. How should we regard these times? Are they hospitable to manifest time? This chapter adopts the perspective that relativity is still a “live” theory under development, so a distinguished time could emerge. However, such a time is unlikely to live up to what we want in manifest time.


Sign in / Sign up

Export Citation Format

Share Document