Electro-Mechanical Response of Polymer Bonded Surrogate Energetic Materials with Carbon Nanotube Sensing Networks for Structural Health Monitoring Applications

Author(s):  
Samantha N. Rocker ◽  
Nishant Shirodkar ◽  
Tanner A. McCoy ◽  
Gary D. Seidel
Author(s):  
Samantha N. Rocker ◽  
T. Wade Pearrell ◽  
Engin C. Sengezer ◽  
Gary D. Seidel

Distributing a carbon nanotube sensing network throughout the binder phase of energetic composites is investigated in an effort for real time embedded sensing of localized heating in polymer bonded explosives (PBXs) through thermo-electromechanical response for in situ structural health monitoring (SHM) in energetic materials. The experimental effort herein is focused on using 70 wt% Ammonium Perchlorate (AP) (solid oxidizer used in solid rocket propellants) crystals embedded into epoxy binder having concentration of 0.1 wt% multi-walled carbon nanotubes (MWCNTs) relative to entire hybrid energetics. Electrical and dielectric properties of neat (i.e. no MWCNTs) energetics and MWCNT hybrid energetics are quantitatively and qualitatively evaluated under localized thermal loading. Electrical and dielectric properties showed variations for both neat energetics and MWCNT hybrid energetics depending on input frequency measurements. Significant thermo-electromechanical response was obtained for MWCNT AP hybrid energetics, providing a proof of concept for thermo-electromechanical sensing for realtime SHM in energetics.


2006 ◽  
Vol 321-323 ◽  
pp. 290-293 ◽  
Author(s):  
Sang Il Lee ◽  
Dong Jin Yoon

Structural health monitoring for carbon nanotube (CNT)/carbon fiber/epoxy composite was verified by the measurement of electrical resistivity. This study has focused on the preparation of carbon nanotube composite sensors and their application for structural health monitoring. The change of the electrical resistance was measured by a digital multimeter under tensile loads. Although a carbon fiber was broken, the electrical connection was still kept by distributed CNT particles in the model composites. As the number of carbon fiber breakages increased, electrical resistivity was stepwise increased. The CNT composites were well responded with fiber damages during the electro-micromechnical test. Carbon nanotube composites can be useful sensors for structural health monitoring to diagnose a structural safety and to prevent a collapse.


Author(s):  
Sergio Rafael Rodriguez ◽  
Sidney Wong ◽  
Omar Dwidar ◽  
Amro El Badawy ◽  
Ashraf Elbarbary ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 265 ◽  
Author(s):  
Jun Zhang ◽  
Gui Tian ◽  
Adi Marindra ◽  
Ali Sunny ◽  
Ao Zhao

Sign in / Sign up

Export Citation Format

Share Document