Structural Health Monitoring for Carbon Fiber/Carbon Nanotube (CNT)/Epoxy Composite Sensor

2006 ◽  
Vol 321-323 ◽  
pp. 290-293 ◽  
Author(s):  
Sang Il Lee ◽  
Dong Jin Yoon

Structural health monitoring for carbon nanotube (CNT)/carbon fiber/epoxy composite was verified by the measurement of electrical resistivity. This study has focused on the preparation of carbon nanotube composite sensors and their application for structural health monitoring. The change of the electrical resistance was measured by a digital multimeter under tensile loads. Although a carbon fiber was broken, the electrical connection was still kept by distributed CNT particles in the model composites. As the number of carbon fiber breakages increased, electrical resistivity was stepwise increased. The CNT composites were well responded with fiber damages during the electro-micromechnical test. Carbon nanotube composites can be useful sensors for structural health monitoring to diagnose a structural safety and to prevent a collapse.

Author(s):  
Sergio Rafael Rodriguez ◽  
Sidney Wong ◽  
Omar Dwidar ◽  
Amro El Badawy ◽  
Ashraf Elbarbary ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


RSC Advances ◽  
2020 ◽  
Vol 10 (39) ◽  
pp. 23038-23048
Author(s):  
Sofija Kekez ◽  
Jan Kubica

Carbon nanotube/concrete composite possesses piezoresistivity i.e. self-sensing capability of concrete structures even in large scale.


Sign in / Sign up

Export Citation Format

Share Document