binder phase
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 53)

H-INDEX

23
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 516
Author(s):  
Simone D’Angelo ◽  
Gilda Ferrotti ◽  
Fabrizio Cardone ◽  
Francesco Canestrari

Polymer-modified bitumens are usually employed for enhancing the mixture performance against typical pavement distresses. This paper presents an experimental investigation of bitumens added with two plastomeric compounds, containing recycled plastics and graphene, typically used for asphalt concrete dry modification. The goal was to study the effects of the compounds on the rheological response of the binder phase, as well the adhesion properties, in comparison with a reference plain bitumen. The blends (combination of bitumen and compounds) were evaluated through dynamic viscosity tests, frequency sweep tests, and multiple stress creep recovery (MSCR) tests. Moreover, the bitumen bond strength (BBS) test was performed to investigate the behavior of the systems consisting of blends and aggregate substrates (virgin and pre-coated). The rheological tests indicated that both blends performed better than the plain bitumen, especially at high temperature, showing an enhanced rutting resistance. In terms of bond strength, comparable results were found between the blends and reference bitumen. Moreover, no performance differences were detected between the two types of blends.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Baoliang Ma ◽  
Yuzhu Zhang ◽  
Lixing Ma

Calcium complex ferrate is an ideal binder phase in the sintered ore phase, and a detailed study of the whole process of calcium complex ferrate generation is of great significance to improve the quality of sintered ore. In this paper, we first investigated calcium ferrate containing aluminum (CFA), which is an important precursor compound for the generation of complex calcium ferrate (SFCA), followed by a series of composite calcium ferrate generation process phase XRD detections and data preprocessing of data. Data correlation and data fitting analysis were combined with composite calcium ferrite phase diagram energy spectrum analysis to obtain the effect of MgO and Al2O3 on the formation of composite calcium ferrite. Then a modified RBF neural network model using the resource allocation network algorithm (RAN) was used to predict the generation trend of complex calcium ferrate. The parameters of the neural network are optimized with the Dragonfly algorithm, compared with the traditional RBF neural network. The prediction accuracy of the improved algorithm was found to be higher, with a prediction result of 97.6%. Finally, the predicted results were based on comparative metallurgical experimental results and data analysis. The validity and accuracy of the findings in this paper were verified.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3828
Author(s):  
Florin Marian Dîrloman ◽  
Gabriela Toader ◽  
Traian Rotariu ◽  
Tudor Viorel Țigănescu ◽  
Raluca Elena Ginghină ◽  
...  

Novel polyurethane-based binders, specifically designed for environmentally responsible rocket propellant composites, were obtained by employing the polyester-polyols that resulted from the degradation of polyethylene terephthalate waste. A new class of “greener” rocket propellants, comprising polyurethanes (based on recycled PET) as the binder, phase stabilized ammonium nitrate (PSAN) as the eco-friendly oxidizer, and triethylene glycol dinitrate (TEGDN) as the energetic plasticizer, together with aluminum as fuel and Fe2O3 as the catalyst, is herein reported. The components of the energetic mixtures were investigated (individually and as composite materials) through specific analytical tools: 1H-NMR, FT-IR, SEM-EDX, DTA and TGA, tensile and compression tests, DMA, and micro-CT. Moreover, the feasibility of this innovative solution is sustained by the ballistic performances exhibited by these composite materials in a subscale rocket motor, proving that these new formulations are suitable for rocket propellant applications.


2021 ◽  
Author(s):  
Samuel John Cooper ◽  
Scott Alan Roberts ◽  
Zhao Liu ◽  
Bartłomiej Winiarski

The mesostructure of porous electrodes used in lithium-ion batteries strongly influences cell performance. Accurate imaging of the distribution of phases in these electrodes would allow this relationship to be better understood through simulation. However, imaging the nanoscale features in these components is challenging. While scanning electron microscopy is able to achieve the required resolution, it has well established difficulties imaging porous media. This because the flat imaging planes prepared using focused ion beam milling will intersect with the pores, which makes the images hard to interpret as the inside walls of the pores are observed. It is common to infiltrate porous media with resin prior to imaging to help resolve this issue, but both the nanoscale porosity and the chemical similarity of the resins to the battery materials undermine the utility of this approach for most electrodes. In this study, a new technique is demonstrated which uses \textit{in situ} infiltration of platinum to fill the pores and thus enhance their contrast during imaging. Reminiscent of the Japanese art of repairing cracked ceramics with precious metals, this technique is referred to as the \textit{kintsugi} method. The images resulting from applying this technique to a conventional porous cathode are presented and then segmented using a multi-channel convolutional method. We show that while some cracks in active material particles were filled with the carbon binder phase, others remained empty, which will have implications for the rate performance of the cell. Energy dispersive X-ray spectroscopy was used to validate the distribution of phases resulting from image analysis, which also suggested a graded distribution of the binder relative to the carbon addative. The equipment required to use the kintsugi method is commonly available in major research facilities and so we hope that this method will be rapidly adopted to improve the imaging of electrode materials and porous media in general.


2021 ◽  
Vol 138 ◽  
pp. 107300
Author(s):  
Yuan Jianpeng ◽  
Yu Yueguang ◽  
Shen Jie

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1062
Author(s):  
Yuanen Lu ◽  
Na Cui ◽  
Yougong Xian ◽  
Jiaqing Liu ◽  
Chao Xing ◽  
...  

The investigation on geopolymers has intrigued broad interests in the past decades, due to the requirements for the recycling of aluminosilicate solid wastes, such as red mud, slags, sludges and demolished concrete. Previous studies have demonstrated the feasibility of reusing this Aluminosilicate as a resource to prepare cementitious materials and indicated their promising properties at ambient temperature. However, when this material was exposed to high temperatures, especially above 1000 °C, the microstructure evolution mechanisms were not systematically investigated. In this study, the microstructural evolution process of metakaolin-based K geopolymer (molar ratio of K:Al:Si was 1:1:4) is investigated. The crystalized leucite originated from the geopolymer precursor was detected above 1000 °C. The SEM results indicate that the microstructure of the geopolymer before heating was composed of non-reacted metakaolin with a typical layered structure and reacted amorphous binder phase. As the geopolymer heated to 1000 °C, the microstructure of the geopolymer changed to a porous structure with an average pore size from 10 to 30 μm. When the heating temperature reached 1100 °C, the pores started to close along with the leucite crystallization process. As the heating temperature reached 1200 °C, most of the pores were closed. The TEM results show that the microstructure of the geopolymer, after being heated to 1400 °C, was composed of an amorphous glassy phase and crystallized leucite phase. The crystallized leucite grains originated from the nano-sized crystal nuclei, with an average size of 2–3 nm. The TEM-EDS results indicate that the chemical composition of the glassy phase was complicated. It varied from area to area because of the movement and uneven distribution of K.


2021 ◽  
Vol 5 (8) ◽  
pp. 210
Author(s):  
Xingzi Yang ◽  
Liqiang Lin ◽  
Justin Wilkerson ◽  
Xiaowei Zeng

The sensitivity of polymer-bonded explosives (PBXs) can be tuned through adjusting binder material and its volume fraction, crystal composition and morphology. To obtain a better understanding of the correlation between grain-level failure and hot-spot generation in this kind of energetic composites as they undergo mechanical and thermal processes subsequent to impact, a recently developed interfacial cohesive zone model (ICZM) was used to study the dynamic response of polymer-bonded explosives. The ICZM can capture the contributions of deformation and fracture of the binder phase as well as interfacial debonding and subsequent friction on hot-spot generation. In this study, a two-dimensional (2D) finite element (FE) computational model of energetic composite was developed. The proposed computational model has been applied to simulate hot-spot generation in polymer-bonded explosives with different grain volume fraction under dynamic loading. Our simulation showed that the increase of binder phase material volume fraction will decrease the local heat generation, resulting in a lower temperature in the specimen.


Sign in / Sign up

Export Citation Format

Share Document