A Bearing Fault Diagnosis Method Based on Autoencoder and Particle Swarm Optimization – Support Vector Machine

Author(s):  
Duy-Tang Hoang ◽  
Hee-Jun Kang
Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3422 ◽  
Author(s):  
Mien Van ◽  
Duy Tang Hoang ◽  
Hee Jun Kang

Bearing is one of the key components of a rotating machine. Hence, monitoring health condition of the bearing is of paramount importace. This paper develops a novel particle swarm optimization (PSO)-least squares wavelet support vector machine (PSO-LSWSVM) classifier, which is designed based on a combination between a PSO, a least squares procedure, and a new wavelet kernel function-based support vector machine (SVM), for bearing fault diagnosis. In this work, bearing fault classification is transformed into a pattern recognition problem, which consists of three stages of data processing. Firstly, a rich information dataset is built by extracting the features from the signals, which are decomposed by the nonlocal means (NLM) and empirical mode decomposition (EMD). Secondly, a minimum-redundancy maximum-relevance (mRMR) method is employed to determine a subset of feature that can provide an optimal performance. Thirdly, a novel classifier, namely LSWSVM, is proposed with the aid of a PSO, to provide higher classification accuracy. The key innovative science of this work is to propropose a new classifier with the aid of an new wavelet kernel type to increase the classification precision of bearing fault diagnosis. The merit features of the proposed approach are demonstrated based on a benchmark bearing dataset and a comprehensive comparison procedure.


2021 ◽  
Vol 13 (6) ◽  
pp. 168781402110284
Author(s):  
Qingfeng Zhang ◽  
Shuang Chen ◽  
Zhan Peng Fan

To improve the accuracy of fault diagnosis of bearing, the improved particle swarm optimization variational mode decomposition (VMD) and support vector machine (SVM) models are proposed. Aiming at the convergence effect of particle swarm optimization (PSO), dynamic inertia weight, and gradient information are introduced to improve PSO (IPSO). IPSO is used to optimize the optimal number of VMD modal components and the penalty factor, which is applied to the vibration signal decomposition. The fault sample set is constructed by calculating the multi-scale information entropy of each component signal obtained from the bearing vibration signals. At the same time, IPSO is used to optimize the support vector machine (IPSO-SVM), which is used to bearing fault diagnosis. The time-domain feature data set is used as the comparison data set, and the classical PSO, genetic algorithm, and cross-validation method are used as the comparison algorithm to verify the effectiveness of the method in this paper. The research results show that the optimized VMD can effectively decompose the vibration signal and can effectively highlight the fault characteristics. IPSO can increase the accuracy by 2% without adding additional costs. And the accuracy, volatility, and convergence error of IPSO are better than comparison algorithms.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 404 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Yanhe Xu ◽  
Kai Wang ◽  
Tie Chen

Rolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads. Vibration signals collected from different types of faults are firstly decomposed by variational mode decomposition (VMD) into sets of intrinsic mode functions (IMFs), where the decomposing mode number K is determined by the central frequency observation method, thus, to weaken the non-stationarity of original signals. Later, the improved fine-sorted dispersion entropy (FSDE) is proposed to enhance the perception for relationship information between neighboring elements and then employed to construct the feature vectors of different fault samples. Afterward, a hybrid optimization strategy combining advantages of mutation operator, sine cosine algorithm and particle swarm optimization (MSCAPSO) is proposed to optimize the SVM model. The optimal SVM model is subsequently applied to realize the pattern recognition for different fault samples. The superiority of the proposed method is assessed through multiple contrastive experiments. Result analysis indicates that the proposed method achieves better precision and stability over some relevant methods, whereupon it is promising in the field of fault diagnosis for rolling bearings.


2011 ◽  
Vol 128-129 ◽  
pp. 113-116 ◽  
Author(s):  
Zhi Biao Shi ◽  
Quan Gang Song ◽  
Ming Zhao Ma

Due to the influence of artificial factor and slow convergence of particle swarm algorithm (PSO) during parameters selection of support vector machine (SVM), this paper proposes a modified particle swarm optimization support vector machine (MPSO-SVM). A Steam turbine vibration fault diagnosis model was established and the failure data was used in fault diagnosis. The results of application show the model can get automatic optimization about the related parameters of support vector machine and achieve the ideal optimal solution globally. MPSO-SVM strategy is feasible and effective compared with traditional particle swarm optimization support vector machine (PSO-SVM) and genetic algorithm support vector machine (GA-SVM).


Sign in / Sign up

Export Citation Format

Share Document