Thermal Conductivity of Unsaturated Soil: Equivalent Microstructure Approach

Author(s):  
Dariusz Łydżba ◽  
Adrian Różański ◽  
Damian Stefaniuk
2012 ◽  
Vol 614-615 ◽  
pp. 688-694 ◽  
Author(s):  
Yi Wang ◽  
Guo Min Shen

In this paper, at first, an effective soil thermal conductivity model was established. Single factor regression analysis for 6 uncertain factors contained in the model was then conducted respectively. Finally, the primary and secondary characters of these uncertain factors were analyzed by using the orthogonal test. The analysis results show that the effective soil thermal conductivity has linear relationships with the saturation degree of unsaturated soil and the depth of water table and has power function relationships with other 4 uncertain factors; the porosity of unsaturated soil has the greatest effect on the effective soil thermal properties, followed by saturation degree of unsaturated soil, porosity of saturated soil, solid phase thermal conductivity of unsaturated soil, solid phase thermal conductivity of saturated soil and the depth of water table.


2021 ◽  
Vol 337 ◽  
pp. 01019
Author(s):  
Thaise da Silva Oliveira Morais ◽  
Cristina de Hollanda Cavalcanti Tsuha ◽  
Orencio Monje Vilar

Ground thermal properties, especially the thermal conductivity, are of paramount importance for the design of ground source heat pump systems (GSHP), used for space heating and cooling. However, very little information, if any, are available from the thermal characteristics of tropical unsaturated soils related to the GSHP application. To evaluate the thermal behaviour of a typical Brazilian tropical unsaturated soil, an extensive experimental investigation was conducted at the test site of the University of Sao Paulo at São EESC/USP) comprising Carlos (a detailed soil characterization; field monitoring of the seasonal groundwater table variation; soil and ambient temperatures, and matric suction of the top soil. This paper describes the investigation program and compares the thermal soil properties as measured in laboratory and field thermal response tests. The results were variable depending on the testing techniques; however, all results showed that the soil thermal conductivity is strongly influenced by the degree of saturation of the soil.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-931-C4-934 ◽  
Author(s):  
M. F. Kotkata ◽  
M.B. El-den

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-893-C6-895
Author(s):  
M. Locatelli ◽  
R. Suchail ◽  
E. Zecchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document