Optimization of Heat Exchanger Flow Paths Using a Novel Integer Permutation Based Genetic Algorithm

Author(s):  
Zhenning Li ◽  
Vikrant Aute
2013 ◽  
Vol 44 (8) ◽  
pp. 761-789 ◽  
Author(s):  
Farzaneh Hajabdollahi ◽  
Zahra Hajabdollahi ◽  
Hassan Hajabdollahi

2017 ◽  
Vol 125 ◽  
pp. 1426-1436 ◽  
Author(s):  
Mona S. Yadav ◽  
Sagar A. Giri ◽  
Vishal C. Momale

2005 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
M. A. S. S. Ravagnani ◽  
A . P. Silva ◽  
A. A. Constantino

In this paper a new systematic is proposed, interfacing Pinch Analysis and Genetic Algorithms (GA). Initially the optimal ∆Tmin is found by using a genetic algorithm. In a second step, with the optimal ∆Tmin, the pinch point is obtained, and the problem is divided in two regions, below and above it. The optimal HEN is obtained for each side of the pinch and the final HEN is achieved. An example from the literature was solved using the proposed systematic. Results show the applicability of the proposed methodology, obtaining a cost value lower than those presented in the literature.


2020 ◽  
Vol 167 ◽  
pp. 114811 ◽  
Author(s):  
Yu Yang ◽  
Hongzhi Li ◽  
Mingyu Yao ◽  
Yifan Zhang ◽  
Chun Zhang ◽  
...  

2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 375-391 ◽  
Author(s):  
Sepehr Sanaye ◽  
Davood Modarrespoor

Cost and effectiveness are two important factors of heat pipe heat exchanger (HPHE) design. The total cost includes the investment cost for buying equipment (heat exchanger surface area) and operating cost for energy expenditures (related to fan power). The HPHE was thermally modeled using e-NTU method to estimate the overall heat transfer coefficient for the bank of finned tubes as well as estimating pressure drop. Fast and elitist non-dominated sorting genetic algorithm (NSGA-II) with continuous and discrete variables was applied to obtain the maximum effectiveness and the minimum total cost as two objective functions. Pipe diameter, pipe length, numbers of pipes per row, number of rows, fin pitch and fin length ratio were considered as six design parameters. The results of optimal designs were a set of multiple optimum solutions, called ?Pareto optimal solutions?. The comparison of the optimum values of total cost and effectiveness, variation of optimum values of design parameters as well as estimating the payback period were also reported for various inlet fresh air volume flow rates.


Sign in / Sign up

Export Citation Format

Share Document