Dual Tableau-Based Decision Procedures for Fragments of the Logic of Binary Relations

Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo
Author(s):  
Peter Matveevich Mazurkin ◽  
Yana Oltgovna Georgieva

The purpose of the article is the analysis of asymmetric wavelets in binary relations between three coordinates at 290 characteristic points from the source to the mouth of the small river Irovka. The hypsometric characteristic is the most important property of the relief. The Irovka River belongs to a low level, at the mouth it is 89 m high, and at the source it is 148 m above sea level. Modeling of binary relations with latitude, longitude, and height has shown that local latitude receives the greatest quantum certainty. In this case, all paired regularities received a correlation coefficient of more than 0.95. Such a high adequacy of wave patterns shows that geomorphology can go over to the wave multiple fractal representation of the relief. The Irovka River is characterized by a small anthropogenic impact, therefore, the relief over a length of 69 km has the natural character of the oscillatory adaptation of a small river to the surface of the Vyatka Uval from its eastern side. This allows us to proceed to the analysis of the four tributaries of the small river Irovka, as well as to model the relief of the entire catchment basin of 917 km2. The greatest adequacy with a correlation coefficient of 0.9976 was obtained by the influence of latitude on longitude, that is, the geographical location of the relief of the river channel with respect to the geomorphology of the Vyatka Uval. In second place with a correlation of 0.9967 was the influence of the height of the points of the channel of the small river on local longitude and it is also mainly determined by the relief of the Vyatka Uval. In third place was the effect of latitude on height with a correlation coefficient of 0.9859. And in last sixth place is the inverse effect of altitude on local latitude in the North-South direction.


1991 ◽  
Vol 15 (3-4) ◽  
pp. 255-274
Author(s):  
Rohit Parikh

We study monotonic and non-monotonic Logics of Knowledge, giving decision procedures and completeness results. In particular we develop a model theory for a non-monotonic Logic of Knowledge and show that it corresponds exactly to normal applications of a non-monotonic rule of inference due to McCarthy.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


Sign in / Sign up

Export Citation Format

Share Document