A Simple Algorithm for Estimating Distribution Parameters from $$n$$ n -Dimensional Randomized Binary Responses

Author(s):  
Staal A. Vinterbo
1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


AEI 2017 ◽  
2017 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bill Zhang ◽  
Jieqiang Wei ◽  
Peng Luo ◽  
Changhui Cui

Author(s):  
Jakub Mészáros ◽  
◽  
Pavol Miklánek ◽  
Pavla Pekárová ◽  
◽  
...  

In this paper the results are presented of estimation of T-year specific discharge of several streams in two regions in Slovakia. The Qmax time series used in the study were observed at water gauges from lowland Slovak part of the Morava River basin, and from the mountainous Belá River basin. For estimating the design values, we have studied the use of only one type of probability distribution, namely the Log-Pearson Type III Distribution (LP3 distribution). The use of only one type of distribution brings several benefits, e.g. possibility of the regionalization of the distribution parameters (in this study skew coefficient). In the first step the design values of the specific discharge series qmax (with historical data) were estimated and regional skew coefficients Gr of the LP3 distribution were computed. Regional skewness coefficient Gr was estimated to be 0.38 in the Morava River region, and 0.73 in the Belá River region. In many cases the estimate of the 1000-year specific discharge is two times higher than the value of the 100-year specific discharge. Then we have derived the empirical relations between station skew coefficient G and the elevation of the water gauge. In the second step we have derived the empirical relationships between 1000-years specific discharge q1000 and the elevation of the water gauge for both regions separately. The derived empirical regional equations can be used to estimate the 1000-years specific discharge of other streams in the region.


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


Sign in / Sign up

Export Citation Format

Share Document