specific discharge
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 77)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Mosbah Ben Said ◽  
Ahmed Ouamane

Abstract Labyrinth weirs are commonly used to increase the capacity of existing spillways and provide more efficient spillways for new dams due to their high specific discharge capacity compared to the linear weir. In the present study, experimental and numerical investigation was conducted to improve the rectangular labyrinth weir performance. In this context, four configurations were tested to evaluate the influence of the entrance shape and alveoli width on its discharge capacity. The experimental models, three models of rectangular labyrinth weir with rounded entrance and one with flat entrance, were tested in rectangular channel conditions for inlet width to outlet width ratios (a/b) equal to 0.67, 1 and 1.5. The results indicate that the rounded entrance increases the weir efficiency by up to 5%. A ratio a/b equal to 1.5 leads to an 8 and 18% increase in the discharge capacity compared to a/b ratio equal to 1 and 0.67, respectively. In addition, a numerical simulation was conducted using the opensource CFD OpenFOAM to analyze and provide more information about the flow behavior over the tested models. A comparison between the experimental and numerical discharge coefficient was performed and good agreement was found (Mean Absolute Relative Error of 4–6%).


Author(s):  
Vahid Ramezankhani ◽  
Igor K. Yakuschenko ◽  
Sergey G. Vasil'ev ◽  
Tatiana A. Savinykh ◽  
Alexander V. Mumyatov ◽  
...  

We synthesized and investigated a series of six promising polymeric electrode materials, which incorporate multiple redox-active groups enabling high specific discharge capacity and energy density in potassium half-cells. All investigated...


2021 ◽  
Vol 21 (6) ◽  
pp. 285-291
Author(s):  
JongChun Kim ◽  
Jongho Jeong

We revisit empirical methods to prevent the overestimation of peak discharge in a small watershed, in particular investigating the time-area method, which has not been considered in the overestimation problem of peak discharge. To avoid misapplying the same inlet time between the unit hydrograph and rational formula, distinct parameter adjustments for each method are proposed. We adopt the secondary basin response time for the unit hydrograph, rainfall duration for the rational formula, and time of concentration for the time-area method, as suitable parameters to adjust the estimation of peak discharge. In conclusion, adding 10 minutes to secondary basin response time, 20 minutes to rainfall duration, and 30 minutes to time of concentration, respectively, yields estimates within a reasonable range of specific discharge in a small watershed.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 149
Author(s):  
Junghoon Yang ◽  
Duyoung Choi ◽  
Kwang-Seok Kim ◽  
Dae Up Kim ◽  
Jungpil Kim

Na3V2(PO4)3 is regarded as one of the promising cathode materials for next-generation sodium ion batteries, but its undesirable electrochemical performances due to inherently low electrical conductivity have limited its direct use for applications. Motivated by the limit, this study employed a porous carbon network to obtain a porous carbon network–Na3V2(PO4)3 composite by using poly(vinylalcohol) assised sol-gel method. Compared with the typical carbon-coating approach, the formation of a porous carbon network ensured short ion diffusion distances, percolating electrolytes by distributing nanosized Na3V2(PO4)3 particles in the porous carbon network and suppressing the particle aggregation. As a result, the porous carbon network–Na3V2(PO4)3 composite exhibited improved electrochemical performances, i.e., a higher specific discharge capacity (~110 mAh g−1 at 0.1 C), outstanding kinetic properties (~68 mAh g−1 at 50 C), and stable cyclic stability (capacity retention of 99% over 100 cycles at 1 C).


2021 ◽  
Vol 11 (24) ◽  
pp. 11675
Author(s):  
Byeong Jin Jeong ◽  
Yong Nam Jo

Zn-air batteries have promise as the next generation of batteries. However, their self-discharge behavior due to the hydrogen evolution reaction (HER) and corrosion of the Zn anode reduce their electrochemical performance. Copper (II) oxide (CuO) effectively suppresses the corrosion and HER. In addition, different electrochemical behavior can be obtained with different shape of nano CuO. To improve the performance of Zn-air batteries, in this study we synthesized nano CuO by the hydrothermal synthesis method with different volumes of NaOH solutions. Materials were characterized by XRD, FE-SEM, and EDX analysis. The sphere-like nano CuO (S-CuO) showed a specific discharge capacity of 428.8 mAh/g and 359.42 mAh/g after 1 h and 12 h storage, respectively. It also showed a capacity retention rate of 83.8%. In contrast, the other nano CuO additives showed a lower performance than pure Zn. The corrosion behavior of nano CuO additives was analyzed through Tafel extrapolation. S-CuO showed an Icorr of 0.053 A/cm2, the lowest value among the compared nano CuO materials. The results of our comparative study suggest that the sphere-like nano CuO additive is the most effective for suppressing the self-discharge of Zn-air batteries.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032064
Author(s):  
K Morgunov ◽  
G Gladkov ◽  
Yu Ivanovsky

Abstract The results of laboratory modeling of bottom reformations in the area of bridge pier crossing over water barriers are presented. The basics of hydraulic modeling are described taking into account the similarity criteria. The flow around a rectangular box (tongued-and-grooved protection of a constructed pier) is experimentally studied, the pattern of erosion if an ice-cutter device is installed in front of the box in the form of a triangle directed at an acute angle towards the flow is considered. The structure of the bottom relief in the vicinity of the tongued-and-grooved box is experimentally studied under the conditions of the bottom erosion. Two cycles of experiments were performed for different values of the flow depth and specific discharge of water. Localization and quantitative characteristics of washouts and alleviation of sandy soil in the vicinity of the streamlined design are established. It is noted that the main mechanism for the formation of the bottom relief is a horseshoe vortex at the base of the pier. A stagnation zone is formed inside the horseshoe. In the absence of an ice cutter, the main zones of soil erosion occur in the corners of the frontal bezel of the box, alluvium forms in the rear unit of the design. By installing an ice-cutter device in front of the box, the erosion zones move to the vicinity of the corners lying at the base of the triangular ice-cutter facing the box. The alluvium remains in the wake of the box. At the same time, the absolute values of the erosion depth and the height of the alluvium under installing the ice-cutter close to the box are reduced. The data of velocity measurements on the free surface and in the flow thickness are also given.


2021 ◽  
Author(s):  
Zhongxia Li ◽  
Junwei Wan ◽  
Tao Xiong ◽  
Hongbin Zhan ◽  
Linqing He ◽  
...  

Abstract. This study provides experimental evidence of Forchheimer flow and transition between different flow regimes from the perspective of pore size of permeable stone. We have firstly carried out the seepage experiments of permeable stones with four different mesh sizes, including 24 mesh size, 46 mesh size, 60 mesh size, and 80 mesh size, which corresponding to mean particle sizes (50 % by weight) of 0.71 mm, 0.36 mm, 0.25 mm, and 0.18 mm. The seepage experiments show that obvious deviation from Darcian flow regime is visible. In addition, the critical specific discharge corresponding to the transition of flow regimes (from pre-Darcian to post-Darcian) increases with the increase of particle sizes. When the “pseudo” hydraulic conductivity (K) (which is computed by the ratio of specific discharge and the hydraulic gradient) increases with the increase of specific discharge (q), the flow regime is denoted as the pre-Darcian flow. After the specific discharge increases to a certain value, the “pseudo” hydraulic conductivity begins to decrease, and this regime is called the post-Darcian flow. In addition, we use the mercury injection experiment to measure the pore size distribution of four permeable stones with different particle sizes, and the mercury injection curve is divided into three stages. The beginning and end segments of the mercury injection curve are very gentle with relatively small slopes, while the intermediate mercury injection curve is steep, indicating that the pore size in permeable stones is relatively uniform. The porosity decreases as the mean particle sizes increases, and the mean pore size can faithfully reflect the influence of particle diameter, sorting degree and arrangement mode of porous medium on seepage parameters. This study shows that the size of pores is an essential factor for determining the flow regimes. In addition, the Forchheimer coefficients are also discussed in which the coefficient A (which is related to the linear term of the Forchheimer equation) is linearly related to 1/d 2 as A = 0.0025 (1/d 2) + 0.003; while the coefficient B (which is related to the quadratic term of the Forchheimer equation) is a quadratic function of 1/d as B =1.14E-06 (1/d)2 − 1.26E-06 (1/d). The porosity (n) can be used to reveal the effect of sorting degree and arrangement on seepage coefficient. The larger porosity leads to smaller coefficients A and B under the condition of the same particle size.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6977
Author(s):  
Oleg Bazaluk ◽  
Andrii Hrubiak ◽  
Volodymyr Moklyak ◽  
Maria Moklyak ◽  
Lina Kieush ◽  
...  

The paper presents a method for obtaining electrochemically active ultrafine composites of iron oxides, superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3, which involved modifying sol-gel citrate synthesis, hydrothermal treatment of the formed sol, and subsequent annealing of materials in the air. The synthesized materials’ phase composition, magnetic microstructure, and structural, morphological characteristics have been determined via X-ray analysis, Mossbauer spectroscopy, scanning electron microscopy (SEM), and adsorption porometry. The mechanisms of phase stability were analyzed, and the model was suggested as FeOOH ® γ-Fe2O3 ® α-Fe2O3. It was found that the presence of chelating agents in hydrothermal synthesis encapsulated the nucleus of the new phase in the reactor and interfered with the direct processes of recrystallization of the structure with the subsequent formation of the α- Fe2O3 crystalline phase. Additionally, the conductive properties of the synthesized materials were determined by impedance spectroscopy. The electrochemical activity of the synthesized materials was evaluated by the method of cyclic voltammetry using a three-electrode cell in a 3.5 M aqueous solution of KOH. For the ultrafine superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O composite with defective hematite structure and the presence of ultra-dispersed maghemite with particles in the superparamagnetic state was fixed increased electrochemical activity, and specific discharge capacity of the material is 177 F/g with a Coulomb efficiency of 85%. The prototypes of hybrid supercapacitor with work electrodes based on ultrafine composites superparamagnetic ‘core/shell’ γ-Fe2O3/defective α-Fe2O3 have a specific discharge capacity of 124 F/g with a Coulomb efficiency of 93% for current 10 mA.


2021 ◽  
Vol 2 (4) ◽  
pp. 610-621
Author(s):  
Nicolas Goujon ◽  
Jérémy Demarteau ◽  
Xabier Lopez de Pariza ◽  
Nerea Casado ◽  
Haritz Sardon ◽  
...  

Over 30 million ton of poly(ethylene terephthalate) (PET) is produced each year and no more than 60% of all PET bottles are reclaimed for recycling due to material property deteriorations during the mechanical recycling process. Herein, a sustainable approach is proposed to produce redox-active nanoparticles via the chemical upcycling of poly(ethylene terephthalate) (PET) waste for application in energy storage. Redox-active nanoparticles of sizes lower than 100 nm were prepared by emulsion polymerization of a methacrylic-terephthalate monomer obtained by a simple methacrylate functionalization of the depolymerization product of PET (i.e., bis-hydroxy(2-ethyl) terephthalate, BHET). The initial cyclic voltammetry results of the depolymerization product of PET used as a model compound show a reversible redox process, when using a 0.1 M tetrabutylammonium hexafluorophosphate/dimethyl sulfoxide electrolyte system, with a standard redox potential of −2.12 V vs. Fc/Fc+. Finally, the cycling performance of terephthalate nanoparticles was investigated using a 0.1 M TBAPF6 solution in acetonitrile as electrolyte in a three-electrode cell. The terephthalate anode electrode displays good cycling stability and performance at high C-rate (i.e., ≥5C), delivering a stable specific discharge capacity of 32.8 mAh.g−1 at a C-rate of 30 C, with a capacity retention of 94% after 100 cycles. However, a large hysteresis between the specific discharge and charge capacities and capacity fading are observed at lower C-rate (i.e., ≤2C), suggesting some irreversibility of redox reactions associated with the terephthalate moiety, in particular related to the oxidation process.


2021 ◽  
Author(s):  
Ching-Min Chang ◽  
Chuen-Fa Ni ◽  
We-Ci Li ◽  
Chi-Ping Lin ◽  
I-Hsian Lee

Abstract The problem of flow through heterogeneous confined aquifers of variable thickness is analyzed from a stochastic point of view. The analysis is carried out on the basis of the integrated equations of the depth-averaged hydraulic head and integrated specific discharge, which are developed by integrating the continuity equation and equation for the specific discharge over the thickness, respectively. A spectrally based perturbation approach is used to arrive at the general results for the statistics of the flow fields in the Fourier domain, such as the variance of the depth-averaged head, and the mean and variance of integrated discharge. However, the closed-form expressions are obtained under the condition of steady unidirectional mean flow in the horizontal plane. In developing stochastic solutions, the input hydraulic conductivity parameter is viewed as a spatial random field characterized by the theoretical spatial covariance function. The evaluation of the closed-form solutions focuses on the influence of the controlling parameters, namely as a geometrical parameter defining the variation of the aquifer thickness and the correlation scale of log hydraulic conductivity, on the variability of the fluid fields. The application of the present stochastic theory to predict the total specific discharge under uncertainty using the field data is also provided.


Sign in / Sign up

Export Citation Format

Share Document