spectrophotometric study
Recently Published Documents


TOTAL DOCUMENTS

1369
(FIVE YEARS 57)

H-INDEX

50
(FIVE YEARS 3)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Si Kuan Thio ◽  
Sung-Yong Park

We present a plasmonic-enhanced dielectrophoretic (DEP) phenomenon to improve optical DEP performance of a floating electrode optoelectronic tweezers (FEOET) device, where aqueous droplets can be effectively manipulated on a light-patterned photoconductive surface immersed in an oil medium. To offer device simplicity and cost-effectiveness, recent studies have utilized a polymer-based photoconductive material such as titanium oxide phthalocyanine (TiOPc). However, the TiOPc has much poorer photoconductivity than that of semiconductors like amorphous silicon (a-Si), significantly limiting optical DEP applications. The study herein focuses on the FEOET device for which optical DEP performance can be greatly enhanced by utilizing plasmonic nanoparticles as light scattering elements to improve light absorption of the low-quality TiOPc. Numerical simulation studies of both plasmonic light scattering and electric field enhancement were conducted to verify wide-angle scattering light rays and an approximately twofold increase in electric field gradient with the presence of nanoparticles. Similarly, a spectrophotometric study conducted on the absorption spectrum of the TiOPc has shown light absorption improvement (nearly twofold) of the TiOPc layer. Additionally, droplet dynamics study experimentally demonstrated a light-actuated droplet speed of 1.90 mm/s, a more than 11-fold improvement due to plasmonic light scattering. This plasmonic-enhanced FEOET technology can considerably improve optical DEP capability even with poor-quality photoconductive materials, thus providing low-cost, easy-fabrication solutions for various droplet-based microfluidic applications.


2021 ◽  
Author(s):  
Dmitry Nikulin ◽  
Антон Гребенников

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1140
Author(s):  
IKHOU Djamila ◽  
M'hamed Kaid ◽  
ZIANI Hanane ◽  
Didier Villemein

This study has investigated the solvent extraction of cadmium and lead ions from an aqueous solution in nitrate medium using aminooctyldiphosphonic acid (AODPA) as extractant in chloroform. In order to establish spectrophotometrically the concentration of metal ion in the aqueous phase before and after extraction, the Arsenazo III method was used. The effects of several extraction parameters on the extraction of these metals ions  including volume ratio between the aqueous and organic phases (1–5), extraction kinetic time (0–30 min), molar ratio Q (1–5), addition of HNO3 (pH =2–6), addition of KNO3 (0.01 – 1M), temperature (10–40°C) and the synergetic effect by adding TOPO (solvating agent) were evaluated. Thermodynamic parameters including the Gibbs free energy (ΔG0),enthalpy (ΔH0), and entropy (ΔS0) were calculated. Performed experiments showed that Pb (II) can be extracted till 73% when Cd (II) can be recovered completely after two cycles. The extraction of both metallic ions was spontaneous, endothermic and with a slight randomness.  Positive synergetic effect was observed at  a chelating agent/TOPO ratio of 3. It is a very encouraging result which can lead us to recover cadmium and lower the concentration of lead from wastewater.


2021 ◽  
Vol 37 (5) ◽  
pp. 1117-1124
Author(s):  
R. M. Nikam ◽  
A. P. Patil ◽  
K. H. Kapadnis ◽  
A. D. Ahirrao ◽  
R.Y. Borse

There are numerous methods has been investigated and developed for the preparation of thin and thick films. Thick film technology is utilized for the production of electronic devices like surface mount devices, in the preparation of hybrid integrated circuit, in the formulation of heating elements, in the construction of integrated passive devices and sensors. Pure tin oxide (SnO2) and composite 1%, 3%, 5%, 7% and 9 % zirconium oxide (ZrO2) thick films of dimensions 2 cm×1 cm incorporated into pure tin oxide (SnO2) were prepared with standard screen printing method. All samples were fabricated on glass support. The thick films were subjected to drying and firing at 5000C at 5 hours in muffle furnace. Thick films of tin oxide (SnO2) and composite 1%, 3%, 5%, 7% and 9 % zirconium oxide (ZrO2) incorporated into pure tin oxide (SnO2) were checked for Scanning Electron Microscopy (S.E.M), Energy Dispersive X-ray Spectroscopy (E.D.A.X), X-ray diffraction (X.R.D), Fourier Transform infra-Red (F.T.I.R) and Ultra-Violet-Visible spectroscopy (U.V) for surface morphology, elemental analysis, crystalline phases of films, vibrational and spectrophotometric study respectively. In this research paper the spectrophotometric parameters such as absorbance and absorption coefficient with pure and compositional thick films were a part of investigation and surveillance.


Talanta Open ◽  
2021 ◽  
pp. 100074
Author(s):  
Tânia C.F. Ribas ◽  
Ildikó V. Tóth ◽  
António O.S.S. Rangel

Author(s):  
Elmira I. Tsygulyova ◽  
◽  
Sergei Yu. Doronin ◽  

For the efficient preconcentration of azo compounds – products of the interaction of 4-nitrophenyldiazonium with thymol, a system 4-nitroaniline (4-NA) – NO2- – Triton X-100 – NaOH – ethanol has been proposed. The optimal conditions for the formation of micellarsaturated phases of the system under study have been established: 3.10-4 M 4-NA – 3.10-4 M NO2- – 5% Triton X-100 – 2.8 M NaOH – 10 vol. % С 2Н5ОН. A spectrophotometric study of the above system has been carried out. A linear dependence was built in the coordinates A (at λ max = 552 nm) vs с(thymol), which is described by an equation of the form A = f(c), A = 26291c + 0.02; R2 = 0.997. The range of the determined contents of thymol is (2·10-6 – 4·10-5) mol/l. A technique for the colorimetric determination of thymol in aqueous media (color channel G) has been developed. The intensity of the channel G chromaticity (IG) is linearly dependent on pc(thymol) in accordance with the equation IG = 54.2pc – 267, R 2 = 0; the lower limit of the determined contents of thymol is 1.10-6 mol/l, which is two times less than in the variant of its spectrophotometric determination. The profiles of petal diagrams in the color coordinates of the RGB CMYK model have been constructed; the dependences of their area (S) and perimeter (P) on the thymol concentration have been obtained (P: y = 278x – 10.13; R 2 = 0.97; S: y = 20182x – 87649, R 2 = 0.99).


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4771
Author(s):  
Nirmal K. Shee ◽  
Ju-Won Seo ◽  
Hee-Joon Kim

This article studies the supramolecular assembly behavior of a Zn-trisporphyrin conjugate containing a triphenylamine core (1) with bridging N-donor ligands using the UV-vis spectrophotometric titration method at micromolar concentrations. Our results show that pyridine, a non-bridging ligand, formed a 3:1 open complex with 1. The corresponding binding constant was estimated to be (2.7 ± 0.15) × 1014 M−3. In contrast, bridging ligands, 4,4-bipyridine (BIPY) and 1,3-di(4-pyridyl)propane (DPYP), formed stable 3:2 double-decker complexes with 1 in solution, which collapsed to yield a 3:1 open complex when excess BIPY or DPYP was added. The binding constants for forming BIPY and DPYP double-decker complexes were estimated to be (9.26 ± 0.07) × 1027 M−4 and (3.62 ± 0.16) × 1027 M−4, respectively. The UV-vis titration profiles supported the conclusion that the degradation of the 3:2 double-decker 1∙BIPY complex is less favorable compared to that of 1∙DPYP. Consequently, the formation of the 3:1 1∙DPYP open complex proceeded more readily than that of 1∙BIPY.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 888
Author(s):  
Balashanmugam Pannerselvam ◽  
Devasena Thiyagarajan ◽  
Annamalai Pazhani ◽  
Kalaichelvan Pudupalayam Thangavelu ◽  
Hyung Joo Kim ◽  
...  

The utilization of biological resources on the manufacture of nano silver has attracted the interest of researchers to develop an eco-friendly, cost-effective technology in nanomaterials production. In the present study, plant-mediated silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of the Copperpod plant, which was well characterized. The ultraviolet-visible spectrophotometric study showed a maximum absorbance peak at 425 nm, and the observation of transmission electron microscopic features revealed that the nanoparticles size ranged between 20 and 70 nm. The synthesized AgNPs were tested for in vitro cytotoxic effects against cancerous cells, such as HepG2, A549 and MCF-7 cells. The findings showed that the IC50 values of AgNPs against cancerous cells viz., HepG2, MCF-7 and A549 cells, were observed to be 69 µg/mL, 62 µg/mL and 53 µg/mL, respectively. In addition, the apoptosis property was analysed using propidium iodide and acridine orange-ethidium bromide via the DNA fragmentation technique. Thus, the outcomes of the current analysis presume that the plant mediated AgNPs obtained from a synthesized Copperpod plant possess significant anti-cancer properties against various cancerous cells.


Sign in / Sign up

Export Citation Format

Share Document